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K2CO3 
(mM)

HAuCl4 1% 
(mL)

Formaldehyde (μL) SiO2@Au-seed 
(μL)

SiO2@Au-1 1.8 0.16 50 20
SiO2@Au-2 3.6 0.32 100 20
SiO2@Au-3 7.2 0.64 200 20
SiO2@Au-4 18 1.6 500 20

Table S1. Reaction conditions for adjusting SiO2@Au shell thickness.

Figure S1. Ultraviolet-visible absorption spectra of Au colloids.



Figure S2. Construction of SiO2 nanoparticles. a) Scanning electron microscopy 

(SEM) images. b) transmission electron microscopy (TEM) images.

Figure S3. Construction of Au nanoparticles. a) Scanning electron microscopy (SEM) 

images. b) transmission electron microscopy (TEM) images. c) ultraviolet-visible 

absorption spectra and d) Zeta potential of Au nanoparticles.



Figure S4. The necessity of elemental composition of SiO2@Au nano shells in LDI 

MS. Typical mass spectra of metabolites in the positive ion mode using a) SiO2@Au, 

b) bare silica core, c) Au nanoparticles and d) α-cyano-4-hydroxycinnamic acid (α-

CHCA) as matrices of 10mM mixture (including L-alanine, serine, L-valine, cysteine, 

lysine, methionine, D-glucose and L-tryptophan in 0.9% NaCl.  

Figure S5. LDI MS spectra of small molecules. Mass spectrum of Na+ adducted  a) 



L-alanine at m/z of 112.11 for [M+Na]+, b) serine at m/z of 128.10 for [M+Na]+, c) L-

valine at m/z of 140.17 for [M+Na]+, d) cysteine at m/z of 144.19 for [M+Na]+, e) lysine 

at m/z of 169.14 for [M+Na]+, f) methionine at m/z of 172.05 for [M+Na]+, g) D-

glucose at m/z of 203.12 for [M+Na]+, h) D-Mannitol at m/z of 205.08 for [M+Na]+ 

and i) L-tryptophan at m/z of 227.15 for [M+Na]+ in 0.9% NaCl and j) the detect limits 

using Au nanoparticles as matrix in positive ion mode. 

Figure S6. The detection performance of serum small molecular metabolites by Au 

NPs and SiO2@Au-2. a) Typical mass spectra of non-CHD serum by AuNPs. b) Typical 

mass spectra of CHD serum by AuNPs. c)Typical mass spectra of non-CHD serum by 

SiO2@Au-2. d)Typical mass spectra of CHD serum by SiO2@Au-2. e) The quantitative 



analysis of the number of peaks. e) The quantitative analysis of the average intensity. 

f) The quantitative analysis of the signal-to-noise ratio (S/N).

Overall workflow of data analysis

The overall workflow was composed of data preprocessing, model training and 

model validation. A validation cohort from CHD mass spectrometry data were used to 

test gold-nanoshell assisted laser desorption/ionization mass spectrometry to 

diagnosing CHD. After the threshold value (θ) was set for different specificity, SVM 

model was built to compute the average validation error.

Data Preprocessing

In order to obtain reliable results, the Mass Spectrometry dataset T was randomly 

divided into two partitions. A part of 80% was used as a training cohort; the other 20% 

was left as validation cohort to verify the supervised machine learning model. The 

training cohort and the validation cohort were prepared separately but using the same 

strategy. First, like other analytical platforms, the raw data were preprocessed with 

several data preprocessing steps such as baseline correction and noise reduction. This 

was followed by normalization step, which could ensure reproducible comparisons. 

Finally, a calibration procedure was employed.

Training Model

The supervised decision-making model proposed for CHD discrimination had 

following steps: 

1. Five times five-fold cross-validation. We divided the training cohort into two subsets, 

one was T-training cohort with 80% of training cohort, the remaining 20% was a T-



validation data set. This process would be repeated for 5 times to get the average 

training error.

2. Model training. Support Vector Machine (SVM) was applied as the classifier, data 

from T-training cohort was considered as input, then the trained SVM model was tested 

by the T-validation cohort and we could get 

the training error. After we developed all the 5 times 5-fold cross-validation, the 

average train error was obtained to train the hyper-parameters. In the end, the training 

model was built by the whole training cohort with the hyper-parameters.

Validation Model

1. Internal validation. When a threshold value was selected, the internal validation 

dataset was used to compute the internal validation error.

2. External validation. Another single-blinded external validation cohort was tested to 

obtain the final external validation error.



Figure S7. Overall workflow of data analysis

Machine learning classifier

Support-vector machines (SVM)

SVM are supervised learning models using learning algorithms that examine data 

for classification and regression analysis in machine learning. An SVM training 

algorithm creates a model that assigns new examples to one of two categories, making 

it a non-probabilistic binary linear classifier, given a collection of training examples, 

each marked as belonging to one of two categories. SVM translates training examples 

to points in space in order to widen the distance between the two categories as much as 

possible. New instances are then mapped into the same space and classified according 

to which side of the gap they land on.

Random forest (RF)

RF is a machine learning technique that’s used to solve regression and 

classification problems. It utilizes ensemble learning, which is a technique that 

combines many classifiers to provide solutions to complex problems. A RF algorithm 

consists of many decision trees. The ‘forest’ generated by the RF algorithm is trained 

through bagging or bootstrap aggregating. Bagging is an ensemble meta-algorithm that 

improves the accuracy of machine learning algorithms. The RF algorithm establishes 

the outcome based on the predictions of the decision trees. It predicts by taking the 

average or mean of the output from various trees. Increasing the number of trees 

increases the precision of the outcome. A RF eradicates the limitations of a decision 



tree algorithm. It reduces the overfitting of datasets and increases precision. It generates 

predictions without requiring many configurations in packages (like scikit-learn).

Lasso regression (LR)

LR is a regularization technique. It is used over regression methods for a more 

accurate prediction. This model uses shrinkage. Shrinkage is where data values are 

shrunk towards a central point as the mean. The lasso procedure encourages simple, 

sparse models. This particular type of regression is well-suited for models showing high 

levels of multicollinearity or when you want to automate certain parts of model 

selection, like variable selection/parameter elimination. LR uses L1 regularization 

technique. It is used when we have more number of features because it automatically 

performs feature selection. If a regression model uses the L1 Regularization technique, 

then it is called LR. If it used the L2 regularization technique, it’s called Ridge 

Regression. L1 regularization adds a penalty that is equal to the absolute value of the 

magnitude of the coefficient. This regularization type can result in sparse models with 

few coefficients. Some coefficients might become zero and get eliminated from the 

model. Larger penalties result in coefficient values that are closer to zero (ideal for 

producing simpler models). On the other hand, L2 regularization does not result in any 

elimination of sparse models or coefficients. Thus, Lasso Regression is easier to 

interpret as compared to the Ridge.



Table S2. 15 m/z from the lasso regression.

Number m/z coef Metabolites Origin of the signal

1 466.3429 42.439316
Glycocholic 

acid[1]/Ethylchenodeoxycholic 
acid[1]

[M+H]+/[M+Na]+

2 125.4685 37.045935 3-Methyl-2-butene-1-thiol[1] [M+Na]+

3 161.6978 25.165203 Carnitine[1]/Indole-3-ethanol[1] [M+H]+/[M+H]+

4 145.0451 21.378481 octanone[1]/Nicotinamide[2] [M+H]+/[M+Na]+

5 113.9622 18.254777
Uracil[2]/Trimethylamine N-
oxide[1]/Potassium chloride[3]

[M+H]+/[M+K]+/[M+K]+

6 132.1074 13.866250 Creatine[1]/leucine[3] [M+H]+/[M+H]+

7 146.4392 13.283424 N-Methylisoleucine[1] [M+H]+

8 620.4997 9.828630
N-(hexadecanoyl)-

sphinganine-1-phosphate[1]
[M+H]+

9 103.7001 7.558457 γ-Aminobutyric acid[1] [M+H]+

10 615.8975 5.627639 NA NA
11 118.4850 4.291872 Valine[1] [M+H]+

12 201.5301 2.494084 Huppuric acid[1] [M+K]+

13 161.0779 1.516102
2-Methyl-3-

(methyldithio)furan[3]
[M+H]+

14 378.2284 1.260060
5-amino-1-(5-phospho-D-

ribosyl)imidazole-4-
carboxylate[3]

[M+K]+

15 193.0717 1.156917 2-Nonynoic acid[1]/Isocitrate[2] [M+H]+/[M+K]+
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