Supplementary information

Natural Polymer Derived Hydrogel Bioink with Enhanced Thixotropy

Improves Printability and Cellular Preservation in 3D Bioprinting

Rongwei Cui¹[#], Sumei Li¹[#], Taiyi Li¹[#], Xue Gou², Tao Jing ², Guowei Zhang^{1, 2}, Xiong Xiong¹, Guihua Wei¹, Zhongmin Jin³, Xiong Xiong^{1*}, Shuxin Qu^{2*}

- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China

*Corresponding author: Prof. Shuxin Qu, Tel: +86-28-87601897, Fax: +86-28-87601371, E-mail: <u>qushuxin@swjtu.edu.cn</u>

*Corresponding author: Dr. Xiong Xiong, Tel: +86-28-87601897, Fax: +86-28-87601371, E-mail: xiongxiong@home.swjtu.edu.cn

[#] These authors contributed equally to this work.

Fig. S1. Schematic of synthesis process of Gel-TA-Alg @Ca²⁺.

Term	Parameter
Nozzle diameter (mm)	0.6
Extrusion width (mm)	0.72
Length* width * height (m ³)	30 *30 *30
Interior fill percentage (%)	10
X/Y axis movement speed (mm/min)	1500
Outline under speed (%)	80

Table S1 Detailed information of the printing parameters

Components	Wavenumber (cm ⁻¹)	Assignment	
		Amide A	
	3411	the partially overlapped stretching vibrations	
		of O-H and N-H groups	
	2037	Amide B	
Gelatin	2937	The free amino acid O-H groups	
	1654	Amide I	
		stretching of the C=O	
	1544	Amide II	
		stretching of the N-H	
	1240	Amide III	
	1240	stretching of the C-N and N-H groups	
ТА	3408	stretching vibrations O-H	
	1716	stretching vibration of C=O groups of	
	1/10	aromatic esters	
	1612	aromatic C=C stretching	
	1448	aromatic C-C stretching	
	1323	bending vibrations for O-H	
	1176	stretching vibrations for C-O	
	1031	stretching vibrations C-O of polyols	
	760	stretching vibrations C-H out-of-plane	
		deformation of benzene ring	
	3413	Amide A	
	2937	Amide B	
Gel-TA	1654	Amide I	
	1541	Amide II	
	1240	Amide III	
	3431	stretching vibrations O-H	
Alg	1711	carboxylic acid salts	
	1611	(RCOO-)	
	1418	the C-O bond of the acid group (RCOOH)	
	1000	the vibrational stretch of the C-O and C-C of	
	1029	the pyranose ring	
Gel-TA-Alg	3418	stretching vibrations O-H	
	1031	carboxylic groups (-COO)	

Table S2 FTIR spectra characteristics of gelatin, tannic acid (TA), gelatin-TA composite (Gel-TA), sodium alginate (Alg) and Gel-TA-Alg composite

Table S3 Different contents of protein secondary structures before and after crosslinking

Protein secondary structure	Gelatin (%)	Gel-TA (%)
Random coil	16.8	11.9
β-sheet	25.6	19.1
α-helix	11.75	9.3
β-corner	37.0	48.5

Table S4 Detailed information for characterizing of injectability

Group	Nozzle shape	Needle diameter(µm)	The needle type(G)
Co N	Cone	410	22
Cy N1	cylinder	410	22
Cy N2	cylinder	260	25
Cy N3	cylinder	600	20

Fig. S2. Synthesis and characterization of Gel-TA-Alg@Ca²⁺. (a) The hypothesized chemical reaction equation of Gel-TA-Alg@Ca²⁺ according to the infrared results and literatures; (b) Images of Gel-TA-Alg@Ca²⁺ with different concentrations of Ca²⁺ before and after gelling; (c) The micromorphology and porosity of Gel-TA-Alg@Ca²⁺ with pre-crosslinking of different concentrations of Ca²⁺; (d) Porosity of hydrogels with different Ca²⁺.

Fig. S3 The curve of extrusion force versus time to extrude water at the speed of 1.5 mm/s by a needle with the diameter of 410 μ m.

Fig. S4 The mechanical properties of Gel-TA-Alg@Ca²⁺ using a universal mechanical testing machine. (a)
Stress-strain curves of Gel-TA-Alg@Ca²⁺ after post-crosslinking with different concentrations of Ca²⁺ for
24 h; (b) Compression modulus results of 5%-15% of Gel-TA-Alg@Ca²⁺ in the linear strain region.