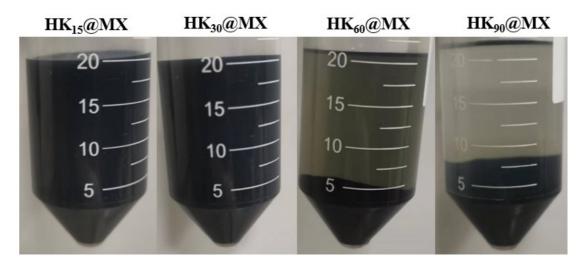
Support information


HKUST-1 Loaded Few-layer Ti₃C₂T_x for Synergistic Chemo-Photothermal Effects to Enhance Antibacterial Activity

Lei Fang^{†,a}, Yingjie Chen^{†,a}, Wei Shan^a, Tiankun Hui^a, Ilham Mokni^c, Jie Wu^c, Chuanli Zhou^{*,b}, Liangmin Yu^{*,a}, Meng Qiu^{*,a}

^a Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China

^b Department of Spine Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China

^c Department of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.

Figure S1 After the synthesis reaction, $HK_{15}@MX$, $HK_{30}@MX$, $HK_{60}@MX$ and $HK_{90}@MX$ were centrifuged in 2000 rmp/min for 5 minutes. The supernatant is getting cleaner while increase the loading of HKUST-1 on the surface of $Ti_3C_2T_x$. The high content of HKUST-1 on the surface of $Ti_3C_2T_x$ leads to the mass increase and deposition to the bottom.

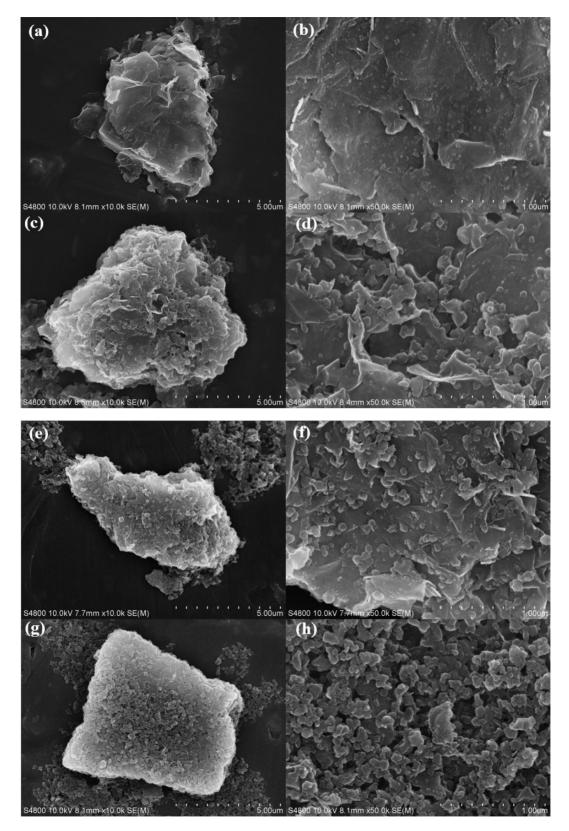
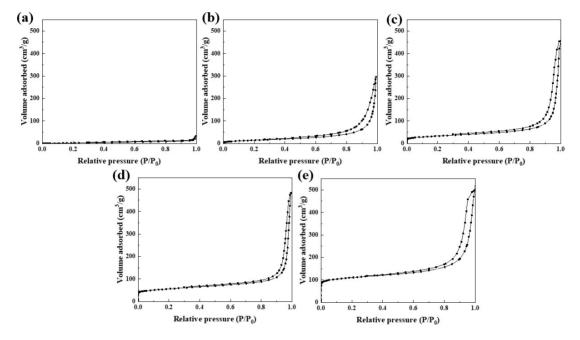



Figure S2. SEM images of (a-b) $HK_{15}@Ti_3C_2T_x$, (c-d) $HK_{30}@Ti_3C_2T_x$, (e-f) $HK_{60}@Ti_3C_2T_x$, (g-h) $HK_{90}@Ti_3C_2T_x$.

Tuble 51 comparison of specific surface and und pole volume of 113021X and 111X sumples		
Materials	BET Surface Area (m ² ·g ⁻¹)	Pore volume (cm ³ ·g ⁻¹)
Ti ₃ C ₂ T _x	11.748	2.68
HK ₁₅ @MX	57.226	13.157
HK ₃₀ @MX	109.45	25.149
HK ₆₀ @MX	131.03	30.105
HK_{90} (a) MX	186.76	42.908

Table S1 Comparison of specific surface area and pore volume of $Ti_3C_2T_x$ and HK@MX samples

Figure S3 Nitrogen absorption–desorption isotherms of (a) $Ti_3C_2T_x$, (b) $HK_{15}@Ti_3C_2T_x$, (c) $HK_{30}@Ti_3C_2T_x$, (d) $HK_{60}@Ti_3C_2T_x$.and (e) $HK_{90}@Ti_3C_2T_x$.

Figure. S4. ICP-MS analysis of Cu content in HKUST-1, $HK_{15}@MX$, $HK_{30}@MX$, $HK_{60}@MX$ and $HK_{90}@MX$. (Calculation formula for measuring Cu element content= instrument reading × dilution factor × constant volume / sample quality. 10000 mg/kg = 1%.)

Photothermal performance of HK@MX

To evaluate the photothermal properties, a near-infrared laser (808 nm, 2 W cm⁻²) was used to irradiate deionized water and HK@MX nanoparticles at different concentrations for 10 minutes. Dispersion temperature was monitored by a type K thermocouple (OMEGA HH309A, OMEGA Engineering Inc., Norwalk, CT, USA). To calculate the photothermal conversion efficiency of HK@MX nanoparticles, 2 mL HK@MX nanoparticle aqueous dispersion (200 μ g mL⁻¹) was irradiated continuously under the same conditions until the steady-state temperature was reached. Turn off the laser and record the temperature drop process. The photothermal conversion efficiency (η) is calculated by equation (1) described by literature¹:

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_s}{I(1 - 10^{-A_{808}})}$$
(1)

Where, *h* is the heat transfer coefficient, *S* is the surface area of the container, T_{max} is the maximum system temperature, T_{surr} is the ambient temperature, *Qs* is the heat related to the optical absorbance of the solvent, I is the laser power (2 W cm⁻²), and A808 is the absorbance at HK₆₀@MX at 808 nm. The value of *hS* is derived from equation (2)

$$\tau_S = \frac{m_D C_D}{hS} \tag{2}$$

Including τ_s for sample system time constant, m_D and C_D respectively deionized water (1 g), and the quality of the heat capacity (4.2 J (g °C)⁻¹). The Q_s value measured independently using pure water was 13.4 mW.

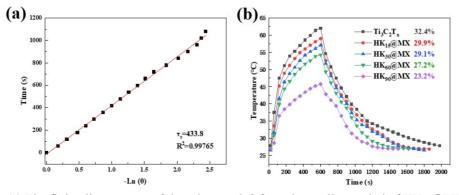


Figure. S5. (a) The fitting linear curve of time data vs $-\ln\theta$ from the cooling period of HK₆₀@MX. (b) The

heating/cooling curves of different nanoparticles with different HKUST-1 doping concentration under laser on/off.

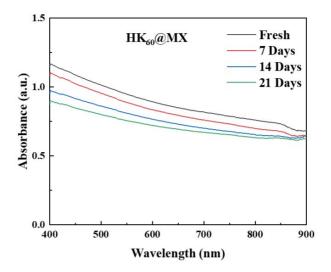
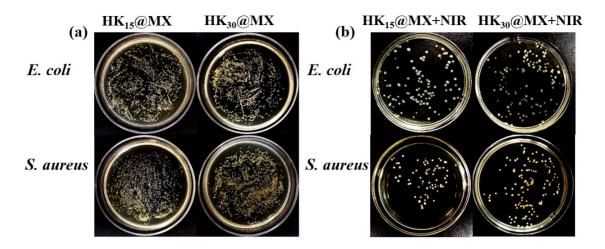
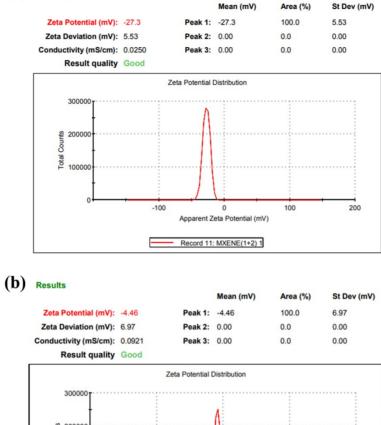
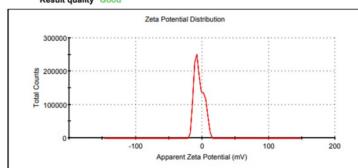




Figure. S6. Absorbance change of HK₆₀@MX dispersions in DI water for 21 days.


Figure S7 In vitro antibacterial activities of HK_{15} @MX and HK_{30} @MX against *S. aureus* and *E. coli.* (a) kept in the dark for 10 min (200 µg/ml) (b)exposed to 808 nm light (2 W/cm²) for 10 min

(a) Results

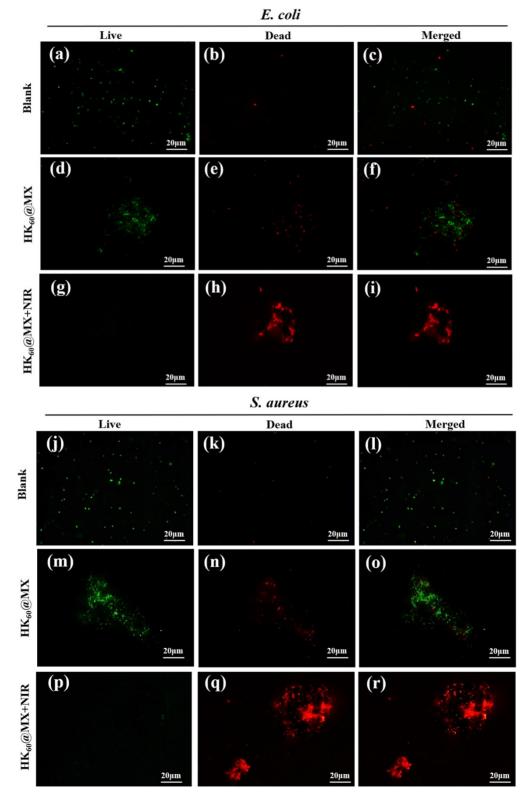


Figure S8 Distribution of zeta potential of (a)Ti $_3C_2T_x$ and (b)HK $_{60}$ @MX at pH 7.5

Record 16: 60(1+2) 3

Figure S9. Confocal laser scanning microscopy (CLSM) images of E. coli (a-i) and S. aureus (j-r) treated with Meilungreen and PI staining. (a–c, j-l) control; (d–f, m-o) 200 µg/mL HK₆₀@MX; (g–i, p-r) 200µg/mL HK₆₀@MX+NIR.

Notes and references

1. Z. Chu, T. Tian, Z. Tao, J. Yang, B. Chen, H. Chen, W. Wang, P. Yin, X. Xia, H. Wang and H. Qian, *Bioactive Materials*, 2022, **17**, 71-80.