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Materials and characterization methods:

All the chemicals except 5-boronoisophthalic acid were purchased from commercial sources
and used without further purification. A Bruker Avance III 600 spectrometer was utilized for
recording '"H NMR and 3C NMR spectra at 400 MHz and 100 MHz respectively. The mass
spectrum (in ESI mode) was measured with an Agilent 6520 Q-TOF high-resolution mass
spectrometer. Fourier transform infrared (FT-IR) spectroscopy data were recorded in the
region 400-4000 cm™! at room temperature with the Perkin Elmer Spectrum Two FT-IR
spectrometer. The following indications were used to indicate the corresponding absorption
bands: very strong (vs), strong (s), medium (m), weak (w), shoulder (sh) and broad (br).
Thermogravimetric (TG) experiments were carried out with a heating rate of 5 °C min'! under
nitrogen atmosphere using a SDT Q600 thermogravimetric analyser. Powder X-ray
diffraction (PXRD) instrument Rigaku Smartlab X-ray diffractometer (model TTRAX III)
with Cu-Ka radiation (A = 1.54056 A), 50 kV of operating voltage and 100 mA of operating
current was used for the collection of all PXRD data. Specific surface area for N, sorption
was calculated on a Quantachrome Autosorb iIQMP gas sorption analyser at -196 °C. FE-
SEM images were collected with a Zeiss (Sigma 300) scanning electron microscope. The
compound was activated at 100 °C for 12 h under dynamic vacuum. Fluorescence emission
studies were performed at room temperature using a HORIBA JOBIN YVON Fluoromax-4
spectrofluorometer. Fluorescence lifetime measurements were performed by time correlated
single-photon counting (TCSPC) method by an Edinburgh Instrument Life-Spec II
instrument. The UV-Vis spectra were measured with a PerkinElmer Lambda 25 UV-Vis
spectrometer.

Synthesis procedure of S-boronoisophthalic acid linker:

This compound was synthesised according to previously reported procedure (Scheme S1).!
3,5-Dimethylphenylboronic acid (1 g, 6.7 mol) and NaOH (500 mg, 12.5 mol) were dissolved
in fert-butanol/water (v/v = 1:1; 25 mL). The reaction mixture was heated to 50 °C under
stirring condition. After that small portion (100 mg) of KMnO, were added to the solution.
After few moments, colour of the solution changed from violet to brown. Then, the rest of
KMnO, (6.5 g) was added and the temperature was set to 70 °C. At last, additional KMnO,
(600 mg) was included. After 3 hours, the reaction was stopped and the excess KMnO,4 was
reduced by the addition of Na,S,0; (100 mg) and filtered. The filtrate was concentrated to
~15 mL by evaporation and acidified to pH = 1 using concentrated HCI. After that, the white
precipitate was collected by filtration and dried in a conventional oven. Yield: 885 mg (4.21
mmol, 63%). 'H NMR (400 MHz, DMSO-d,): & = 8.61 (d, 2H), 8.50 (t, 1H), 8.43 (s, 2H)
ppm 3C NMR (100 MHz, DMSO-dy): 6 = 167.04, 139.14, 131.65, 130.43 ppm. ESI-MS
(m/z): 209.0255 for (M-H) ion (M = mass of 3,5-dimethylphenylboronic acid acid linker).
Figures S1-S3 show the NMR and mass spectra of the synthesized 3,5-
dimethylphenylboronic acid linker.
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Scheme S1. Reaction scheme for the preparation of 5-boronoisophthalic acid linker.

Preparation of MOF (1’) suspension for the fluorescence sensing experiments:

The probe 1’ (3 mg) was taken in a 5 mL glass vial containing 3 mL HEPES buffer. For the
sensing experiments in aqueous medium, HEPES buffer was replaced by Milli-Q water.
Then, the suspension was sonicated for 15 min and kept it for overnight to make the
suspension stable. During the fluorescence experiment, 100 pL of above-mentioned
suspension of 1’ was added to 3000 uL of Milli-Q water/HEPES buffer in a quartz cuvette.
All the fluorescence spectra were collected in the range of 290-420 nm by exciting the
suspension at 280 nm. For competitive experiments, the solutions of the different competitive
analytes (concentration = 10 mM) were added to the suspension of 1’ and spectra were
collected in the same range.

Fluorescence detection of dopamine in human blood serum and urine samples:

From the vein of a healthy volunteer, 10 mL of blood sample was collected. The collected
blood sample was then immediately centrifuged for 15 min at 3000 rpm speed in order to
separate the blood cells. The light yellow coloured serum was collected by using a Pasteur
pipette and it was diluted to 1000 times to its original concentration. After that, the serum was
immediately stored at 0 °C. Thereafter, appropriate amount of free dopamine was added to
human blood serum to make the dopamine concentration of 10 mM in the medium. After
that, different volumes of dopamine-spiked human blood serum were introduced into the
HEPES buffer suspension of the probe and fluorescence spectra were recorded.

The human urine sample of 10 mL was collected. Then, the urine sample was acidified with
500 pL of conc. HNOjz and centrifuged at 3000 rpm for 15 min. The supernatant was
collected and it was diluted to 100 times of its original concentration. Then, the dopamine
concentration in the urine sample was made 10 mM after the addition of appropriate amount
of free dopamine into the urine samples. Different volumes of this solution were used for
dopamine detection in urine samples (Aex = 280 nm, A, = 350 nm).
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General procedure for Biginelli reaction:

A reaction tube was charged with 25 mg of catalyst. Then, benzaldehyde (0.4 mmol),
ethylacetoacetate (1 mmol) and urea (0.7 mmol) were added in a conventional catalytic
reaction. Then, 0.1 mL of solvent was added to this combination and homogeneously mixed
before it was placed in an oil bath maintained at 80 °C. Table 1 shows how long this reaction
mixture was agitated for. GC-MS was used to track the development of the reaction. The
reaction was quenched and the reaction tube was allowed to cool to room temperature when it
had completed. The mixture was afterwards diluted with ethanol, filtered, and GC-MS
examined to determine the final yield of the product. GC-MS and '"H NMR were used to
confirm the products. Reusability tests were carried out in a manner similar to that described
above, with the exception of the addition of recovered catalyst obtained by filtration after the
reaction, which was washed three times with fresh ethanol (5 mL) and dried at 100 °C for
three hours.
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Fig. S1. '"H NMR spectrum of 5-boronoisophthalic acid linker in DMSO-d.
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Fig. S2. 13C NMR spectrum of 5-boronoisophthalic acid linker in DMSO-d.
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Fig. S3. ESI-MS spectrum of 5-boronoisophthalic acid linker measured in methanol. The
spectrum shows m/z peak at 209.0255, which corresponds to (M-H)™ ion (M = mass of 5-
boronoisophthalic acid linker).
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Fig. S4. FT-IR spectra of (a) as-synthesized 1, (b) activated 1’ (c) 1’ after treatment of
dopamine and (d) 1’ after catalysis reaction.
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Fig. S5. PXRD patterns of (a) simulated AI-CAU-10 (black), (b) as-synthesized 1 (pink) and
(c) activated 1’ (blue).
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Fig. S7. EDX spectrum of 1.
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Fig. S8. Thermogravimetric analysis curves of as-synthesized 1 (black) and thermally
activated 1’ (blue) recorded under N, atmosphere in the temperature range of 25-800 °C with

a heating rate of 5 °C min!.
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Fig. S10. PXRD patterns of 1’ in different forms: (a) activated 1’, after stirred with (b) ethyl
acetate (c) acetone (d) HEPES buffer, (e) H,O (f) pH =8 and (g) pH =10 for 12 h.
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Fig. S11. PXRD patterns of 1’ in different forms: (a) activated 1’, (b) kept in open air, after
stirred with (¢) 1M HCI (d) AcOH (e) EtOH and (f) MeOH for 12 h.
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Fig. S12. N, adsorption (black circles) and desorption (red circles) isotherms of thermally
activated 1’ recorded at —196 °C.
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Fig. S13. CO, adsorption (solid circles) and desorption (hollow circles) isotherms of
thermally activated 1’ recorded at 0 °C.
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Fig. S14. Excitation (black) and emission (red) spectra of 1’ in HEPES buffer medium.
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Fig. S15. Excitation (black) and emission (red) spectra of 1’ in aqueous medium.
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Fig. S16. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES

buffer medium after addition of 100 uL of 10 mM aqueous dopamine solution in presence of
100 uL of 10 mM aqueous solution of alanine (Ala).
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Fig. S17. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of ascorbic acid (AA).
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Fig. S18. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES

buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of arginine (Arg).
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Fig. S19. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 uL of 10 mM aqueous dopamine solution in presence of
100 puL of 10 mM aqueous solution of CO;2-.
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Fig. S20. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of cysteine (Cys).
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Fig. S21. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 uL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of glucose.
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Fig. S22. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES

buffer medium after addition of 100 uL of 10 mM aqueous dopamine solution in presence of
100 puL of 10 mM aqueous solution of glutathione (Glu).
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Fig. S23. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 uL of 10 mM aqueous solution of K*.
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Fig. S24. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES

buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of leucine (Leu).
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Fig. S25. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 uL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of Na*.
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Fig. S26. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES

buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of NaHCO;.
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Fig. S27. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 uL of 10 mM aqueous dopamine solution in presence of
100 uL of 10 mM aqueous solution of serine (Ser).
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Fig. S28. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES

buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 puL of 10 mM aqueous solution of threonine (Thr).
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Fig. S29. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of uric acid (UA).
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Fig. S30. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of urea.
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Fig. S31. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of adrenaline.
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Fig. S32. Increment in fluorescence emission intensity of the suspension of 1’ in HEPES
buffer medium after addition of 100 pL of 10 mM aqueous dopamine solution in presence of
100 pL of 10 mM aqueous solution of tyrosine (Tyr).
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Fig. S33. Change in the fluorescence emission intensity of 1’ in HEPES buffer as a function
of concentration of dopamine.
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Fig. S35. Relative fluorescence changes of 1’ after adding 100 pL of 10 mM dopamine
solution in presence of 100 pL. of 10 mM different competitive analytes into an aqueous
suspension of 1’ (A, = 280 nm, A, = 350 nm) (blue bars for competitive analytes and pink
bars are for competitive analyte + dopamine).
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Fig. S36. Change in the fluorescence intensity of 1’ in water as a function of concentration of
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Fig. S37. PXRD patterns of compound 1’ before (a) and after (b) treatment with dopamine in
HEPES buffer medium.
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Fig. S40. Turn-on in fluorescence emission intensity of the suspension of 1’ in HEPES buffer
medium after addition of 10 mM of different volumes of dopamine-spiked serum solution.
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Fig. S41. Turn-on in fluorescence emission intensity of the suspension of 1’ in HEPES buffer
medium after addition of 10 mM different volumes of dopamine-spiked urine solution.
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Fig. S42. Images of 1’-coated paper strips under UV lamp (a) before and (b) after treatment
with dopamine solution.
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Fig. S43. UV-Vis spectra of compound 1’ in absence (black) and presence (red) of dopamine
solution (100 pL, 10 mM).
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Fig. S44. Lifetime decay profile of 1’ in absence and presence of dopamine solution (Ae =
280 nm, monitored at 290 nm).
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Fig. S45. (a) 'H NMR spectra of the free linker molecule, (b) free dopamine and (c) the linker
obtained after the treatment with dopamine in DMSO-ds medium. In case of dopamine
treated sample, except the dopamine protons, no other additional peaks were found. But, the
peaks corresponding to the linker molecules are shifted towards the up-field region (peaks at
8.60 and 8.50 are shifted to 8.14 and 8.13 ppm) and the peak corresponding to the free -OH
groups (8.42 ppm) are vanished. Such shift in 'H NMR and the vanishing of ~OH protons
peak confirm about the complex formation of the linker with dopamine.
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Fig. S46. ESI-MS spectrum of dopamine-treated S5-boronoisophthalic acid linker showing
m/z (negative ion mode) peaks at 152.0089, 209.0231, and 327.0914 which correspond to
(M-H) 10n of free dopamine, free linker and dopamine coordinated linker respectively.

Spectral data Product
Molecular weight of C;4H;sN,05 found: 260.2
Exact mass of GC-MS found m/z: 260.1 o
(Fig. S47)
Purification by column chromatography, eluent: ~o | NH
hexane/ethyl acetate 65:35. 'H NMR (CDCls, 400 N/go
MHz): & = 7.03-7.16 (m, 6H), 4.92 (s, 1H), 4.00 (q, J H
= 7.2 Hz. 2H), 2.25 (s, 3H), 1.09 (t, ] = 7.2 Hz. 3H).
(Fig. S48)
Molecular weight of C14H;sFN,O; found: 278.2 F
Exact mass of GC-MS found m/z: 278.1
(Fig. S49)
Purification by column chromatography, eluent: Q
hexane/ethyl acetate 65:35. 'H NMR (DMSO-d6, -0 | NH
400 MHz): 6 =9.18 (s, 1H), 7.71(s, 1H), 7.25 (d, J= N/go
8.4 Hz. 2H), 7.13(d, J=8.7 Hz. 2H). 5.15 (s, 1H), H
3.98 (q, J=7.2 Hz. 2H), 2.25(s, 3H), 1.08 (t, J=7.2
Hz. 3H). (Fig. S50)
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Molecular weight of C;4H;5CIN,O; found: 294.2
Exact mass of GC-MS found m/z: 294.1

(Fig. S51)

Purification by column chromatography, eluent:
hexane/ethyl acetate 65:35. 'H NMR (DMSO-d6,
400 MHz): & =9.20 (s, 1H), 7.73(s, 1H), 7.38(d, J=
8.4 Hz. 2H), 7.24(d, J=8.7 Hz. 2H). 5.15 (s, 1H),
3.97 (q, J=7.2 Hz. 2H), 2.25(s, 3H), 1.09 (t, J=7.2
Hz.3H). (Fig. S52)

Cl

Molecular weight of C;4H;5BrN,0O; found: 339.1
Exact mass of GC-MS found m/z: 338.0

(Fig. S53)

Purification by column chromatography, eluent:
hexane/ethyl acetate 65:35. 'H NMR (DMSO-d6,
400 MHz): & =9.22 (s, 1H), 7.95(s, 1H), 7.50(d, J=
8.4 Hz. 2H), 7.16(d, J=8.7 Hz. 2H). 5.12 (s, 1H),
3.94 (q, J=7.2 Hz. 2H), 2.25(s, 3H), 1.06 (t, J=7.2
Hz.3H). (Fig. S54)

Molecular weight of C;4H;sN30s found: 305.2

Exact mass of GC-MS found m/z: 305.1

(Fig. S55)

Purification by column chromatography, eluent:
hexane/ethyl acetate 65:35. 'H NMR (DMSO-d6,
400 MHz): 6 =9.25 (s, 1H), 7.83 (d, J=7.2 Hz. 1H)
7.67(s, 1H), 7.49(m, 2H), 7.44(t, J=7.2 Hz. 1H). 5.33
(s, 1H), 3.96 (q, J=6.9Hz. 2H), 2.29 (s, 3H), 1.06 (t,
J=6.9 Hz.3H). (Fig. S56)

NO,

Molecular weight of C;5sH;sN,O,4 found: 290.3

Exact mass of GC-MS found m/z: 290.01

(Fig. S57)

Purification by column chromatography, eluent:
hexane/ethyl acetate 65:35. 6 =9.5 (s, 1H), 7.12 (d, J
= 8.4 Hz, 2H), 6.89 (d, J = 8.7 Hz, 3H), 5.11 (s, 1H);
4.00 (q, J = 7.2 Hz, 2H); 3.73 (s, 3H); 2.29 (s, 3H);
1.09 (t, J =7.2, Hz, 3H). (Fig. S58)
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Molecular weight of C;4H;sN,0O,4 found: 276.2 OH

Exact mass of GC-MS found m/z: 276.01

(Fig. S59)

Purification by column chromatography, eluent: Q

hexane/ethyl acetate 65:35. 'H NMR (DMSO-d6, -0 | NH
N

400 MHz): & = 9.34 (s, 1H), 9.10 (s, 1H), 7.61 (s,
1H), 7.02 (d, J = 7.8 Hz. 2H), 6.68 (m, 2H) 5.04 (s, H
1H) 3.95 (q, J = 7.2 Hz, 2H) 2.24 (s, 3H) 1.08 (t, ] =
7.2 Hz. 3H) (Fig. S60).

Molecular weight of C;5H;sN,0; found: 275.2
Exact mass of GC-MS found m/z: 275.1
(Fig. S61)

Molecular weight of C;gHsN,O5 found: 310.3
Exact mass of GC-MS found m/z: 310.3
(Fig. S62)

fibundance Sean 4317 (26,780 min): hk-2-Didata.ms
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Fig. S47. GC-MS trace of ethyl 6-methyl-2-0x0-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-
carboxylate.
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Fig. S48. The "THNMR spectrum of ethyl 6-methyl-2-0x0-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate.
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Fig. S49. GC-MS trace of ethyl4-(4-fluorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-

carboxylate.
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Fig. S50. The 'HNMR spectrum of ethyl 4-(4-fluorophenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate.
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Fig. S51. GC-MS trace of ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate.
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Fig. S52. The 'HNMR spectrum of ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo0-1,2,3,4-
tetrahydropyrimidine-5-carboxylate.
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Fig. S53. GC-MS trace of ethyl4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate.
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Fig. S54. The 'HNMR spectrum of ethyl 4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine 5-carboxylate.
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Fig. S55. GC-MS trace of ethyl6-methyl-4-(4-nitrophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate.
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Fig. S56. The 'HNMR spectrum of ethyl6-methyl-4-(4-nitrophenyl)-2-ox0-1,2,3,4-

tetrahydropyrimidine-5-carboxylate.
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Fig. S57. GC-MS trace of ethyl 4-(4-methoxyphenyl)-6-methyl-2-0x0-1,2,3,4-tetrahydropyrimidine-

5-carboxylate.
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Fig. S58. The 'HNMR spectrum of ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate.
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Fig. S59. GC-MS trace of ethyl 4-(4-hydroxyphenyl)-6-methyl-2-0x0-1,2,3,4-tetrahydropyrimidine-

S-carboxylate.
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Fig. S60. The 'HNMR spectrum of ethyl4-(4-hydroxyphenyl)-6-methyl-2-oxo0-1,2,3,4-
tetrahydropyrimidine-5-carboxylate.
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Fig. S61. GC-MS trace of ethyl 6-methyl-2-0x0-4-(p-tolyl)-1,2,3,4-tetrahydropyrimidine-5-
carboxylate.
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Fig. S62. GC-MS trace of ethyl 6-methyl-4-(naphthalen-2-yl)-2-ox0-1,2,3,4-tetrahydropyrimidine-5-

carboxylate.
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Table S1. Results of the structure-less Pawley refinements.

CAU-10-B(OH),

space group 14,md
a=bh[A] 21.5762(8)
c[A] 10.4567(6)
a=p=y[°] 90
Rwe [%0] 4.5
GoF 3.2

Table S2. Comparison of the response time, detection limit and sensing media used for the
reported chemosensors of dopamine in the literature.

Sl. | Sensor Material | Type of Material | Sensing Detection | Response | Detection Ref.
No. Medium Limit Time method
1 Cu;(HHPT), MOF 0.1 M CaCl, | 100 nM - Electrochemical | 2
solution
2 AgPd@Zr-MOF | MOF - 0.1 pM - Electrochemical | 3
3 Organic Organic molecule | Alkali 0.3 uM 30 min Fluorescence 4
molecule medium
4 CDs CDs Aqueous 20 nM - Fluorescence 5
5 BA-Tb-MOG Metal-organic gel | Aqueous 0.08 uM | 0.5 min Fluorescence 6
6 Gold template Polymer film Aqueous 200 nM - Electrochemical | 7
7 Aptamer- Gold electrodes - 20 nM - Electrochemical | 8
modified
electrodes
8 EuPAN Chromatography | 5 mM | 0.01 uM - Electrochemical | 9
paper K3[Fe(CN)6]
in 0.5 M KCl
9 ECP Ultrathin PBS-buffer 21 nM 5 min Fluorescence 10
metal—organic
nanosheets
10 | N-GQDs Quantum dots PBS-buffer 0.07 mM | 40 min Fluorescence 11
11 | Abtz—CdI,-MOF | MOF 0.1 M Tris— | 57 nM 10 min Fluorescence 12
HCI buffer
12 | Eu-MOF MOF 1.0mL PBS | 0.015 1 min Fluorescence 13
mM
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13 | CNT-N Carbon nanotube - 1 uM to | 15 min Electrochemical | 14
20 uM

14 | Polydopamine PBS-buffer 40 nM 3h Fluorescence 15

nanoparticles NaOH and
HCI

15 | [AI(OH)(IPA- MOF HEPES- 3.5nM <1 min Fluorescence this
B(OH),)]- 1H,0- buffer 11.7nM work
0.5DMF (1) H,O

Table S3. Fluorescence lifetimes of 1’ before and after the addition of dopamine solution (A

= 320 nm, pulsed diode laser).

Volume of dopamine a a T, (ns) T, (ns) <t>*  (ns)
solution added
(uL)
0 0.88 0.12 3.07 5.96 3.42
100 0.95 0.5 0.78 3.16 2.32
<> =4 s am
Table S4. Comparison of the activity of 1’ with other catalysts for the Biginelli reaction.
Entry | Catalyst T (°C) Time (h) Yield (%) | Ref.
1 PTA@MIL-101 100 1 90 16
2 Cu-based MOF 60 2 86 17
3 IRMOF-3 60 7 93 18
4 Zn-based MOF 60 2 93 19
5 [Co(DPP),(H,0),]-(BS),2H,0 | 80 2 85 20
6 TiCl4,-MgCl,-4CH;0H 100 3 90 21
7 Ni-DDIA MOF 80 0.5 84.6 22
8 Cu(INA),.MOF 80 2 99 23
9 [Al(OH)(IPA-B(OH),)] 80 24 94 this
-1H,0-0.5DMF (1') work
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