Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Surface Ligand Engineering Involving Fluorophenethyl ammonium for Stable and Strong Emission CsPbBr₃ Quantum Dots and High-Performance QLEDs

Qiang Zhang^a, Minghui Jiang^a, Guijun Yan^a, Yaqing Feng^{a,b}, Bao Zhang^{*a,b}

a School of Chemical Engineering and Technology, Tianjin University, Tianjin

300350, China.

b Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center,

Guangdong Province, 522000, P. R. China.

E-mail

address:

<u>baozhang@tju.edu.cn</u>

Zhang)

(Bao

Figure S1. (a) ¹H-NMR spectra of PEABr, oFPEABr, mFPEABr and pFPEABr. (b) ¹⁹F-NMR

spectra of the CsPbBr₃ QDs and the different ligands modified CsPbBr₃ QDs.

Figure S2. The direction and intensity of molecular dipole moments as indicated by the

length of the arrows. (a-c)

Figure S3. (a) N 1S, (b) The radio of Pb and Br caculated by XPS data of the CsPbBr₃ QDs

and the different ligands modified CsPbBr₃ QDs.

Figure S4. Size distribution histogram for the CsPbBr₃ QDs and the different ligands

modified CsPbBr₃ QDs.

Table S1. The summary of PLQY, average lifetime (τ_{ave}), radiative recombination

Life time (τ_r) , radiative (k_r) and nonradiative (k_{nr}) decay rates of the CsPbBr₃ QDs and the different ligands modified CsPbBr₃ QDs. The τ_{ave} , τ_r , k_r and k_{nr} are calculated based on the

following formulas:
$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}, \tau_r = \frac{\tau_{ave}}{PLQY}, k_r = \frac{1}{\tau_r}, k_{nr} = \frac{1}{\tau_{ave}} - k_r$$
(A1 and A2)

Sample	PLQY(%)	$ au_1$ (ns)	$ au_2$ (ns)	τ _{ave} (ns)	$ au_r$ (ns)	k _r (ns ⁻¹)	k _{nr} (ns ⁻¹)
Control-QDs	65.89	11.53	48.32	37.48	56.88	0.018	0.0091
PEABr-QDs	88.92	13.38	54.84	40.67	45.73	0.022	0.0027
oFPEABr-QDs	94.93	12.95	58.10	46.47	48.95	0.020	0.0011
mFPEABr-QDs	91	12.35	55.19	43.52	47.83	0.021	0.0021
pFPEABr-QDs	95.79	15.99	69.45	56.39	58.87	0.017	0.0007

are normalized coefficients)

Figure S5. SEM images of the CsPbBr₃ QDs and the different ligands modified CsPbBr₃

Figure S6. (a) Luminance, (b) EQE curves of the CsPbBr₃ QLEDs and the different ligands

modified CsPbBr₃ QLEDs.

QDs.