Photocontrolled reversible modulation of lanthanide luminescence in mesoporous silica nanospheres by photochromic diarylethenes

Qing-Feng Li^{*a*}, Hongjun Xia^{*a*}, Erqing Li^{*b*}, Jin-Tao Wang^{*a**}, Zhenling Wang^{*c**}

^{*a*} Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, Henan, PR China.

^b College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China.

^c College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Xinzheng, 451191, PR China.

*Corresponding author

E-mail: wangjintao2565@126.com (J. T. Wang), zlwang2007@hotmail.com (Z. Wang).

Fig. S1 ¹H-NMR (a) and ¹³C-NMR (b) of open-form BTHFC. ¹H-NMR (400MHz, CDCl₃) δ ppm: 7.45-7.30 (10H, m), 2.40 (6H, d), 2.15 (6H, d). ¹³C-NMR (100MHz, CDCl₃) δ ppm: 139.0, 138.8, 136.2, 134.0, 132.1,132.0, 129.1, 128.5, 127.5, 126.0, 125.9, 14.9, 14.7.

Fig. S2 High resolution mass spectrum (HR-MS) of open-form BTHFC. (M⁺=548.1055)

Fig. S3 FT-IR spectra of MSNs (black line) and NH_2 -MSNs (red line). The peak near 3420 cm⁻¹ and 1630 cm⁻¹ can be assigned to the stretching vibration of O-H and bending vibration of H-O-H, respectively (Fig. S3a and b). The results indicate the presence of adsorbed water molecules in the samples. The peak located at 1485 cm⁻¹ is ascribed to the scissoring vibrations of CH₂- (Fig. S3b).¹ Moreover, the stretching of Si-C is also observed at 695 cm⁻¹ (Fig. S3b).²

Fig. S4 The luminescence lifetime curves of Eu(DBM)₃·phen(a) and NH₂-MSNs@Eu(DBM)₃·phen (b).

Samples	Lifetimes (ms)	Quantum yields (%)
Eu(DBM) ₃ ·phen	0.46	32.7
NH ₂ -MSNs@Eu(DBM) ₃ . phen	0.70	12.5
NH2-MSNs@BTHFC/Eu(DBM)3 phen	0.69	12.2

Table S1 The lifetimes and quantum yields of Eu(DBM)₃ phen and NH₂-MSNs@Eu(DBM)₃ phen.

Fig. S5 The luminescence intensity changes of NH_2 -MSNs@Eu(DBM)₃ phen within 4 weeks.

MSNs@BTHFC/Eu(DBM)3[.]phen.

Fig. S7 The luminescence lifetime curves of NH2-MSNs@BTHFC/Eu(DBM)3 phen.

Table S2 The size of pores, BET surface area and total volume of pores of MSNs, NH2-MSNs and

Sample	Size of pores	BET surface	Total volume of
	(nm)	area (m 2 g $^{-1}$)	pores (cm ³ g ⁻¹)
MSNs	22.5	452	2.54
NH ₂ -MSNs	21.4	366	1.96
NH ₂ -			
MSNs@BTHFC/Eu(21.0	319	1.67
DBM) ₃ ·phen			

NH2-MSNs@BTHFC/Eu(DBM)3 phen.

Fig. S8 The photographic images of NH₂-MSNs@BTHFC/Eu(DBM)₃·phen after irradiation with the 254 nm UV lamp (a), The luminescence images of NH₂-MSNs@BTHFC/Eu(DBM)₃·phen under the 365 nm UV lamp (b).

Fig. S9 The emission spectra of NH₂-MSNs@BTHFC/Eu(DBM)₃·phen dispersion (0.5 mg/mL) and corresponding photographic image under daylight (a) or under the 365 nm UV lamp (b). This result showed that the luminescence intensity of NH₂-MSNs@BTHFC/Eu(DBM)₃·phen in aqueous solution remained stable within 1 h.

Fig. S10 Solid-state ¹⁹F NMR spectra of BTHFC and BTHFC/Eu(DBM)₃·phen (the molar ratio of BTHFC and Eu(DBM)₃·phen is 1:1).

Reference

- 1. P. Premila, C. Subbu, S. Rajendran and K. S. Kumar, Appl. Surf. Sci., 2018, 449, 426-434.
- 2. P. G. Song, Y. Shen, B. X. Du, Z. H. Guo and Z. P. Fang, Nanoscale, 2009, 1, 118-121.