Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting information

Towards Rational Design of TADF Two-coordinate Coinage Metal Complexes: Understanding the Relationship between Natural Transition Orbital Overlap and Photophysical Properties

Tian-yi Li^{a,b}, Jonas Schaab^a, Peter I. Djurovich^a, Mark E. Thompson^{a*}

^a Department of Chemistry, University of Southern California, Los Angeles, CA, USA

^b School of Chemistry and Biological Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China

Email: met@usc.edu

Contents

General information	4
Syntheses and characterization	4
General procedure for the carbene precursors	4
Figure S1 ¹ H NMR spectra of the carbene precursors	4
Synthesis of the Cu complexes	5
Figure S2 ¹ H NMR and ¹³ C NMR spectra of the Cu(I) complexes	7
Synthesis of the Ag complexes	7
Figure S3 ¹ H NMR and ¹³ C NMR spectra of the Ag(I) complexes	9
Synthesis of the Au complexes	9
Figure S4 ¹ H NMR and ¹³ C NMR spectra of the Au(I) complexes	12
Crystallography	13
Table S1 Crystallographic data of Me-Cu, Me-Ag, Ph-Au and Ph-Au ^{CN}	13
Figure S5 Thermal Ellipsoid diagrams (a) and packing diagrams (b) of Me-Cu, Me-Ag, P Ph-Au ^{CN}	h-Au and14
Electrochemistry	16
Figure S6 CV and DPV curves for (carbene)Cu(carbazolyl) in DMF	17
Figure S7 CV and DPV curves for (carbene)Ag(carbazolyl) in DMF	
Figure S8 CV and DPV curves for (carbene)Au(carbazolyl) in DMF	19
Table S2 Electrochemical data of the coinage metal complexes	20
Molecular modeling	21

Table S3 Plots of the frontier molecular orbitals	21
Table S4 Calculated vertical transition properties of the S ₁ and T ₁ states	22
Table S5 Calculated singlet-triplet energy gaps	23
Table S6 Natural transition orbitals analyses of the S1 and T1 state	24
Photophysics	26
Strickler Berg analysis of radiative rates.	26
Figure S9 Absorption spectra of all the complexes in toluen	26
Figure S10 Absorption spectra in toluene and the theoretical calculations of k _r based on the Strickler-Berg equation for (carbene)Cu(carbazolyl) complexes.	27
Figure S11 Absorption spectra in toluene and the theoretical calculations of k _r based on the Strickler-Berg equation for (carbene)Ag(carbazolyl) complexes	28
Figure S12 Absorption spectra in toluene and the theoretical calculations of k _r based on the Strickler-Berg equation	29
Figure S13 Absorption spectra in CH ₂ Cl ₂ for (carbene)Cu(carbazolyl) complexes	30
Figure S14 Absorption spectra in CH ₂ Cl ₂ for (carbene)Ag(carbazolyl) complexes	31
Figure S15 Absorption spectra in CH ₂ Cl ₂ for (carbene)Au(carbazolyl) complexes	32
Figure S16 Emission spectra of the (carbene)Cu(carbazolyl) complexes	
Figure S17 Emission spectra of the (carbene)Ag(carbazolyl) complexes	34
Figure S18 Emission spectra of the (carbene)Au(carbazolyl) complexes	35
Figure S19 Emission spectra in doped PS film at room temperature (solid) and 77K (dash)	35
Table S7 Complete emissive photophysical properties in MeCy and 1wt% doped PS film	
Table S8 Φ_{PL} values of the doped PS films under air and N_2	36
Table S9 Emission properties in toluene	37
Figure S20 Full kinetic fits of the temperature dependent lifetime from 210 to 310 K for (carbene)Cu(carbazolyl) complexes.	
Figure S21 Full kinetic fits of the temperature dependent lifetime from 210 to 310 K for (carbene)Ag(carbazolyl) complexes.	
Figure S22 Full kinetic fits of the temperature dependent lifetime from 210 to 310 K for (carbene)Au(carbazolyl) complexes	40
Table S10 Complete photophysical properties of TADF coinage metal complexes including examples	reported 41
Table S11 Relative Φ_{PL} in doped PS film at different temperature	42
Figure S23 TADF radiative decay rate as a function of NTO overlap with structures of report molecules	ted 43
Figure S24 Relationship between calculated $krS1$ by Strickler-Berg equation and Osc. Streng on the new coinage metal complexes.	gth based 44

Figure S25 Relationship between the experimentally fitted $krS1$ and calculated $krS1$ by Strickler-Be equation	erg 44
Figure S26 Relationship between experimental and theoretically calculated ΔE_{ST}	45
Table S12 Photophysical properties of some reported highly efficient organic TADF molecules	45
References	48

General information

All reactions were carried out using Schleck line system under N₂ in oven dried glassware. Organic and inorganic materials were used as commercial grade without further purifications. Anhydrous solvents were purified by Class Contour solvent system by SG Water USA, LLC. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 400 instrument. Elemental analyses were performed at University of Southern California, using a Fisher CHNS 2000 instrument.

Syntheses and characterization

General procedure for the carbene precursors

The methyl or phenyl substituted acetylenyl formamidine **1** was synthesized according to previous method, and the following 6-endo-dig cyclization was performed using a modified procedure.^{1, 2} Equal equivalent of **1** (500 mg) and AgOTf (300 mg) were dissolved in 20 mL dichloromethane (DCE) in a sealed glass vial. The solution was refluxed for 1h and the clear colorless solution turned into dark brown suspension with Ag mirror on the wall. After cooling down to room temperature, the suspension was filtrated through Celite. The filtration was injected to another sealed vial and 1 equiv. of HOTf was added dropwise. The system was stirred at room temperature for another 1h. The solution was filtered through Celite. After removing all the volatiles, the raw product was washed by cold ether for three times, giving the carbene precursors as white powder.

Figure S1¹H NMR spectra of the carbene precursors

Synthesis of the Cu complexes

Carbene precursor was dissolved in 150 mL anhydrous THF at room temperature and 1.05 euqiv. of KHMDS (0.5M in toluene) was injected dropwise. After stirring at room temperature for 3h, 1.1 euqiv. of CuCl was added in one portion and the system was kept stirring for overnight. Then, the mixture was filtered through Celite. After removing the volatiles, the residue was sonicated in ether giving the intermediate complex **3** as beige powder (yield around 60%), which was used in the following reactions without further purifications.

Me-Cu, Me-Cu^{CN}, Ph-Cu and Ph-Cu^{CN} were synthesized according to a known procedure which was well described in previous publications.³⁻⁵

Me-Cu was obtained with a yield of 80% as yellow powder. ¹H NMR (400 MHz, acetone) δ 7.93 (t, J = 7.8 Hz, 1H), 7.81 (t, J = 7.8 Hz, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.9 Hz, 2H), 7.58 (d, J = 7.8 Hz, 2H), 6.85 (ddd, J = 8.2, 7.0, 1.3 Hz, 2H), 6.79 – 6.69 (m, 3H), 5.60 (d, J = 8.1 Hz, 2H), 2.99 (sept, J = 6.7 Hz, 4H), 2.15 (d, J = 0.9 Hz, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.28 (d, J = 6.8 Hz, 6H), 1.23 (dd, J = 9.5, 6.9 Hz, 12H). ¹³C NMR (101 MHz, acetone) δ 158.51, 155.04, 149.80, 145.77, 145.62, 136.99, 135.97, 131.48, 130.39, 125.86, 124.91, 123.95, 122.78, 118.44, 115.09, 114.58, 111.72, 29.65, 28.75, 28.33, 24.72, 23.63, 8. Elemental analysis calculated C 74.57, H 7.02, N 6 26, found C 74.24, H, 7.05, N 6 12.

23.37, 22.60, 20.18. Elemental analysis calculated C 74.57, H 7.02, N 6.36; found C 74.24, H ,7.05 N 6.13.

Me-Cu^{CN} was obtained with a yield of 77% as bright yellow powder. ¹H NMR (400 MHz, acetone) δ 8.18 – 8.12 (m, 1H), 7.97 (t, J = 7.8 Hz, 1H), 7.90 – 7.81 (m, 2H), 7.71 (d, J = 7.9 Hz, 2H), 7.59 (d, J = 7.8 Hz, 2H), 7.11 (dd, J = 8.5, 1.7 Hz, 1H), 6.98 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H), 6.88 (td, J = 7.5, 1.0 Hz, 1H), 6.74 (d, J = 1.0 Hz, 1H), 5.65 (d, J = 8.1 Hz, 1H), 5.55 (dd, J = 8.5, 0.5 Hz, 1H), 3.06 – 2.91 (m, 4H), 2.15 (s, 3H), 1.38 (d, J = 6.8 Hz, 6H), 1.24 (dd, J = 10.7, 6.8 Hz, 12H), 1.19 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 158.41, 155.07, 151.55, 150.44, 145.87, 145.70, 136.99, 135.98, 131.67, 130.59, 125.98, 4.52, 124.19, 123.75, 123.23, 121.35, 119.26, 117.12, 115.12, 115.05, 112.01, 96.85, 28.86,

125.66, 125.02, 124.52, 124.19, 123.75, 123.23, 121.35, 119.26, 117.12, 115.12, 115.05, 112.01, 96.85, 28.86, 24.76, 23.64, 23.37, 22.57, 20.17. Elemental analysis calculated C 73.60, H 6.62, N 8.17; found C 73.08, H 6.44, N 7.99.

Ph-Cu was obtained with a yield of 82% as yellow powder. ¹H NMR (400 MHz, acetone) δ 7.82 (t, J = 7.8 Hz, 1H), 7.77 – 7.70 (m, 3H), 7.60 (d, J = 7.8 Hz, 2H), 7.47 (d, J = 7.9 Hz, 3H), 7.37 (dd, J = 5.1, 1.5 Hz, 4H), 6.82 (ddd, J = 8.2, 7.0, 1.3 Hz, 2H), 6.78 (s, 1H), 6.71 (td, J = 7.4, 1.0 Hz, 2H), 5.59 – 5.53 (m, 2H), 3.12 (dhept, J = 20.3, 6.6 Hz, 4H), 1.29 (d, J = 6.8 Hz, 6H), 1.26 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.9 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 158.40, 156.70, 149.77, 146.05, 145.93, 137.53, 136.00, 131.73, 131.34, 130.59, 130.50, 129.35, 128.21, 125.44, 125.03, 123.96, 122.75, 118.42, 115.06,

114.62, 113.14, 28.85, 25.51, 23.68, 23.63, 21.96. Elemental analysis calculated C 76.48, H 6.70, N 5.82; found C 76.23, H 6.44, N 5.64.

Ph-Cu^{CN} was obtained with a yield of 75% as bright yellow powder. ¹H NMR (400 MHz, acetone) δ 8.16 (s, 1H), 7.89 (t, J = 7.9 Hz, 2H), 7.81 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 6.6 Hz, 2H), 7.49 – 7.44 (m, 1H), 7.40 (dd, J = 8.7, 5.3 Hz, 4H), 7.11 (dd, J = 8.5, 1.5 Hz, 1H), 6.98 (t, J = 7.1 Hz, 1H), 6.89 (t, J = 7.3 Hz, 1H), 6.83 (s, 1H), 5.65 (d, J = 8.1 Hz, 1H), 5.54 (d, J = 8.5 Hz, 1H), 3.15 (dtd, J = 20.4, 13.5, 6.7 Hz, 4H), 1.29 (t, J = 7.3 Hz, 12H), 1.24 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 158.31, 156.66, 151.51, 150.42, 146.12, 146.03, 137.58, 136.02,

131.61, 131.52, 130.70, 130.67, 129.34, 128.25, 125.63, 125.56, 125.15, 124.49, 124.20, 123.72, 123.24, 121.35, 119.24, 117.09, 115.16, 115.10, 113.41, 96.81, 28.84, 25.57, 23.69, 23.64, 21.93. Elemental analysis calculated C 75.52, H 6.34, N 7.50; found C 75.38, H 6.07, N 7.27.

Figure S2¹H NMR and ¹³C NMR spectra of the Cu(I) complexes

Carbene precursor and 0.7 euqiv. of Ag_2O were stirred in 50 mL anhydrous CH_2Cl_2 at room temperature for 48h with a coverage of aluminum foil. After removing the insoluble precipitates by filtration through Celite, the filtrate was dried to afford raw product. Then, the oily raw product was sonicated in ether to provide the final product as light purple powder (yield over 90%), which was used in the following reactions without further purifications.

Me-Ag, Me-Ag^{CN}, Ph-Ag and Ph-Ag^{CN} were synthesized according to a known procedure which was well described in previous publications.³⁻⁵

Me-Ag was obtained with a yield of 79% as orange powder. ¹H NMR (400 MHz, acetone) δ 7.88 (t, J = 7.7 Hz, 1H), 7.77 (t, J = 9.2 Hz, 3H), 7.68 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.8 Hz, 2H), 6.93 (ddd, J = 8.1, 7.0, 1.2 Hz, 2H), 6.80 – 6.70 (m, 3H), 6.04 (d, J = 8.1 Hz, 2H), 2.98 (dq, J = 13.4, 6.6 Hz, 4H), 2.23 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.34 (d, J = 6.8 Hz, 6H), 1.28 (d, J = 6.9 Hz, 6H), 1.24 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 158.35, 158.30, 154.91, 154.84, 150.29, 145.41, 145.28, 138.25, 137.47, 131.43, 130.36, 125.81, 124.81, 123.84, 122.79, 118.59, 114.58, 114.44, 112.21, 28.84, 28.66, 24.71, 23.63,

23.50, 22.86, 20.49, 20.48. Elemental analysis calculated C 69.88, H 6.58, N 5.96; found C 69.43, H 6.52, N 5.86.

Me-Ag^{CN} was obtained with a yield of 75% as yellow powder. ¹H NMR (400 MHz, acetone) δ 8.21 (s, 1H), 7.94 (t, J = 7.9 Hz, 2H), 7.82 (t, J = 7.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.21 (dd, J = 8.5, 1.6 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 6.91 (t, J = 7.3 Hz, 1H), 6.80 (s, 1H), 6.11 (d, J = 8.1 Hz, 1H), 6.00 (d, J = 8.4 Hz, 1H), 2.98 (m, 4H), 2.25 (d, J = 0.8 Hz, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.32 (d, J = 6.8 Hz, 6H), 1.25 (dd, J = 10.4, 6.8 Hz, 12H). ¹³C NMR (101 MHz, acetone) δ 158.29, 158.23, 154.94, 154.87, 145.53, 145.38, 138.28, 137.55, 131.58, 130.52, 125.92, 125.70, 124.92, 124.57, 123.92, 121.51, 119.39, 116.76, 115.04, 114.91, 112.40, 96.22, 28.83, 28.65, 24.75, 23.63, 23.52, 22.85, 20.48.

Elemental analysis calculated C 69.13, H 6.22, N 7.68; found C 69.08, H 6.05, N 7.43.

Ph-Ag was obtained with a yield of 79% as yellow powder. ¹H NMR (400 MHz, acetone) δ 7.85 – 7.70 (m, 4H), 7.60 (d, J = 7.8 Hz, 2H), 7.53 – 7.46 (m, 3H), 7.45 – 7.38 (m, 4H), 6.92 (ddd, J = 8.2, 7.0, 1.2 Hz, 2H), 6.87 (s, 1H), 6.78 – 6.69 (m, 2H), 6.02 (d, J = 8.1 Hz, 2H), 3.26 – 2.99 (m, 4H), 1.35 (d, J = 6.8 Hz, 6H), 1.29 (dd, J = 12.4, 6.8 Hz, 12H), 1.15 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 158.21, 158.15, 156.44, 156.37, 150.29, 145.68, 145.56, 138.90, 137.54, 131.72, 131.32, 130.80, 130.48, 129.53, 128.31, 125.48, 124.93, 123.85, 122.76, 118.58, 114.55, 114.48, 113.61, 28.83, 28.81, 25.48, 23.88, 23.55, 22.24.

Elemental analysis calculated C 72.06, H 6.31, N 5.48; found C 71.86, H 6.18, N 5.28.

Ph-Ag^{CN} was obtained with a yield of 73% as light yellow powder. ¹H NMR (400 MHz, acetone) δ 8.20 (d, J = 1.3 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.86 (t, J = 7.8 Hz, 1H), 7.79 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 2H), 7.52 (d, J = 7.9 Hz, 2H), 7.50 – 7.47 (m, 1H), 7.46 – 7.38 (m, 4H), 7.20 (dd, J = 8.5, 1.7 Hz, 1H), 7.07 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 6.94 – 6.86 (m, 2H), 6.09 (d, J = 8.2 Hz, 1H), 6.02 – 5.95 (m, 1H), 3.21 – 3.04 (m, 4H), 1.34 (d, J = 6.8 Hz, 6H), 1.28 (dd, J = 8.4, 6.8 Hz, 12H), 1.15 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 158.14, 158.09, 156.35, 145.76, 145.68, 139.00, 137.62, 131.62, 131.46, 130.87, 130.63, 129.52, 128.35, 125.67, 125.59, 125.03, 124.54, 123.90, 121.52, 119.38, 116.73,

115.08, 114.95, 113.79, 96.19, 28.81, 28.78, 25.53, 23.89, 23.57, 22.22. Elemental analysis calculated C 71.30, H 5.98, N 7.08; found C 71.08, H 5.97, N 7.03.

Figure S3 ¹H NMR and ¹³C NMR spectra of the Ag(I) complexes

The Au(I)-Cl intermediate complexes were obtained by a metal ion exchange reaction. Equal equivalent of Carbene-AgOTf and $(Me)_2$ SAuCl were stirred in anhydrous CH₂Cl₂ for overnight. After the filtration through Celite, the filtrate was dried under vacuum. Excess amount of ether was added in the raw material and the intermediate complex was obtained as light purple precipitate (yield over 90%), which was used in the following reactions without further purifications.

Me-Au, Me-Au ^{CN}, Ph-Au and Ph-Au ^{CN} were synthesized according to a known procedure which was well described in previous publications.³⁻⁵

Me-Au was obtained with a yield of 80% as orange powder. ¹H NMR (400 MHz, acetone) δ 7.90 (t, J = 7.8 Hz, 1H), 7.82 – 7.75 (m, 3H), 7.67 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.8 Hz, 2H), 6.95 (ddd, J = 8.2, 7.0, 1.3 Hz, 2H), 6.82 – 6.75 (m, 3H), 6.08 (dt, J = 8.2, 0.9 Hz, 2H), 3.02 – 2.88 (m, 4H), 2.22 (d, J = 1.0 Hz, 3H), 1.39 (dd, J = 6.8, 5.7 Hz, 12H), 1.30 (d, J = 6.9 Hz, 6H), 1.23 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 201.36, 158.40, 155.16,

149.16, 145.44, 145.33, 137.11, 136.05, 131.11, 130.01, 125.41, 124.37, 123.59, 122.82, 118.41, 115.63, 113.79, 111.05, 28.74, 28.57, 24.09, 23.39, 23.05, 22.81, 20.30. Elemental analysis calculated C 62.04, H 5.84, N 5.29; found C 61.97, H 5.68, N 5.18.

Me-Au^{CN} was obtained with a yield of 78% as yellow powder. ¹H NMR (400 MHz, acetone) δ 8.22 (dd, J = 1.7, 0.6 Hz, 1H), 7.93 (dd, J = 11.1, 4.5 Hz, 2H), 7.82 (t, J = 7.8 Hz, 1H), 7.69 (d, J = 7.8 Hz, 2H), 7.60 – 7.54 (m, 2H), 7.22 (dd, J = 8.5, 1.7 Hz, 1H), 7.08 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 6.93 (ddd, J = 7.9, 7.1, 1.0 Hz, 1H), 6.80 (d, J = 1.0 Hz, 1H), 6.13 (dt, J = 8.2, 0.8 Hz, 1H), 6.05 (dd, J = 8.5, 0.6 Hz, 1H), 3.01 – 2.86 (m, 4H), 2.22 (d, J = 1.0 Hz, 3H), 1.37 (dd, J = 6.8, 1.4 Hz, 12H), 1.28 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 200.52, 158.44, 155.37, 151.13, 150.04, 145.74, 145.61,

137.31, 136.24, 131.50, 130.41, 125.89, 125.72, 124.71, 124.67, 124.02, 123.96, 123.07, 121.07, 119.42, 117.72, 114.54, 114.51, 111.60, 97.71, 24.30, 23.59, 23.25, 23.01, 20.49. Elemental analysis calculated C 61.61, H 5.54, N 6.84; found C 61.88, H 5.53, N 6.75.

Ph-Au was obtained with a yield of 82% as orange powder. ¹H NMR (400 MHz, acetone) δ 7.85 – 7.71 (m, 4H), 7.58 (d, J = 7.8 Hz, 2H), 7.50 – 7.42 (m, 3H), 7.38 (d, J = 4.4 Hz, 4H), 6.93 (ddd, J = 8.2, 7.0, 1.3 Hz, 2H), 6.86 (s, 1H), 6.77 (ddd, J = 7.9, 7.1, 1.0 Hz, 2H), 6.05 (dt, J = 8.2, 0.8 Hz, 2H), 3.07 (sept, J = 6.7 Hz, 4H), 1.41 (d, J = 6.8 Hz, 6H), 1.32 (d, J = 6.8 Hz, 6H), 1.26 (d, J = 6.8 Hz, 6H), 1.11 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 202.37, 158.56, 156.94, 149.36, 146.07, 145.78, 137.84, 136.36, 131.70, 131.26, 130.80, 130.32, 129.73, 128.27, 125.30, 124.70, 123.81, 123.02, 118.62, 115.84, 114.05, 112.78,

25.02, 23.81, 23.37, 22.47. Elemental analysis calculated C 64.55, H 5.65, N 4.91; found C 64.40, H 5.64, N 4.90.

Ph-Au^{CN} was obtained with a yield of 80% as yellow powder. ¹H NMR (400 MHz, acetone) δ 8.23 (dd, J = 1.7, 0.6 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.84 (dt, J = 20.4, 7.8 Hz, 2H), 7.62 (d, J = 7.8 Hz, 2H), 7.54 – 7.45 (m, 3H), 7.41 (d, J = 4.3 Hz, 4H), 7.22 (dd, J = 8.5, 1.7 Hz, 1H), 7.08 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 6.94 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.91 (s, 1H), 6.13 (dd, J = 8.2, 0.8 Hz, 1H), 6.05 (dd, J = 8.5, 0.6 Hz, 1H), 3.18 – 3.00 (m, 4H), 1.42 (d, J = 6.8 Hz, 6H), 1.32 (d, J = 6.8 Hz, 6H), 1.27 (d, J = 6.8 Hz, 6H), 1.13 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, acetone) δ 201.38, 158.39, 156.87, 151.12, 150.03,

146.13, 145.87, 137.87, 136.35, 131.57, 131.42, 130.86, 130.50, 129.72, 128.28, 125.87, 125.40, 124.78, 124.69, 124.03, 123.95, 123.08, 121.07, 119.41, 117.70, 114.58, 114.57, 113.10, 97.69, 25.03, 23.79, 23.34, 22.44. Elemental analysis calculated C 64.09, H 5.38, N 6.36; found C 63.79, H 5.44, N 6.33.

Figure S4 ¹H NMR and ¹³C NMR spectra of the Au(I) complexes

Crystallography

All single crystal samples suitable for X-ray diffraction measurements were grown by slow diffusion of ether into CH_2Cl_2 solution. The diffraction intensity frames were collected on a Bruker APEX DUO 3-circle platform diffractometer using Cu K α radiation (λ =1.54184 Å). The diffractometer was equipped with an APEX II CCD detector and an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection adjusted to 100(2) K. The single crystal structures for MeCu was determined at 100 K with a Rigaku Xta LAB Synergy S, equipped with an HyPix-600HE detector and an Oxford Cryostream 800 low-temperature unit, using a Cu K_{α} PhotonJet-S X-ray radiation source. The crystal was mounted in a Cryo-Loop using Paratone oil. The frames were integrated using the SAINT algorithm to give the hkl files. Data were corrected for absorption effects using the multiscan method (SADABS). The structures were solved by intrinsic phasing and refined with the Bruker SHELXTL software package or Rigaku Crysalis pro Software respectively. Supplementary crystallographic data can be downloaded from Cambridge Crystallographic Data Center (CCDC) with the following registration numbers: **Me-Cu** (2117673 or RARFID); **Me-Ag** (2117674 or RARFOJ); **Ph-Au** (2117675 or RARFEZ); **Ph-Au**^{CN} (2117672 or RARFAV).

Complex	Me-Cu	Me-Ag	Ph-Au	Ph-Au ^{CN}
Formula	C41H46CuN3O	C41H46AgN3O	C46H48AuN30	C47H47AuN40
Formula weight	659.84	706.0	855.84	880.85
Temperature	100 K	100 K	100 K	100 K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system	orthorhombic	orthorhombic	orthorhombic	monoclinic
Space group	Pna2 ₁	P na 2_1	$P2_{1}2_{1}2_{1}$	I2/a
a (Å)	23.6479(3)	24.3212(3)	9.113(5)	26.0430(3)
<i>b</i> (Å)	8.7894(1)	8.7335(1)	13.346(5)	8.55063(8)
<i>c</i> (Å)	36.5241(7)	36.2832(4)	33.166(16)	39.0005(4)
α (deg)	90	90	90	90
β (deg)	90	90	90	108.1204(11)
γ (deg)	90	90	90	90
Volume (Å ³)	7591.5(2)	7706.8(2)	4034(3)	8254.07(15)
Z	8	8	4	8
F (000)	2796	2950	1728	3552
θ (deg) for collection	5.18 to 160.56	4.87 to 155.34	5.35 to 69.60	2.38 to 77.91
	-30≤h≤26	-30≤h≤27	-11≤h≤11	-32≤h≤31
Index range	-10≤k≤11	-10≤k≤10	-16≤k≤15	-10≤k≤10
	-46 <u>≤</u> 1 <u>≤</u> 44	 45≤1≤44	-38≤l≤40	-45≤l≤49
Reflections measured	60363	51974	50861	29356
Goodness of Fit	1.035	1.053	1.069	1.074
Final R indices	$R_1 = 0.0868$	$R_1 = 0.0618$	$R_1 = 0.0151$	$R_1 = 0.0201$
$[I > 2\sigma(I)]$	$wR_2 = 0.2094$	$wR_2 = 0.1555$	$wR_2 = 0.0377$	$w\dot{R}_2 = 0.0480$
R indices	$R_1 = 0.0933$	$R_1 = 0.0631$	$R_1 = 0.0153$	$R_1 = 0.0224$
(all data)	$wR_2 = 0.2137$	$wR_2 = 0.1564$	$wR_2 = 0.0378$	$wR_2 = 0.0488$
CCDC number	2117673	2117674	2117675	2117672

Table S1 Crystallographic data of Me-Cu, Me-Ag, Ph-Au and Ph-Au^{CN}

Figure S5 Thermal Ellipsoid diagrams (a) and packing diagrams (b) of Me-Cu, Me-Ag, Ph-Au and Ph-Au^{CN}

Figure S5 Thermal Ellipsoid diagrams (a) and packing diagrams (b) of Me-Cu, Me-Ag, Ph-Au and Ph-Au^{CN} (continued)

Electrochemistry

Cyclic voltammetry (CV) and differential pulsed voltammetry (DPV) were performed using a VersaSTAT 3 potentiostat in anhydrous DMF under N_2 atmosphere. A standard three-electrode system with a glassy carbon rod working electrode, a platinum wire counter electrode and a silver wire reference electrode was employed. Tetra-*n*-butyl ammonium hexafluorophosphate (TBAHF) was used as supporting electrolyte on a concentration of 0.1M. Ferrocene was used as internal reference and the redox potentials of the complexes were adjusting the ferrocene redox potentials as 0V.

Figure S6 CV and DPV curves for (carbene)Cu(carbazolyl) in DMF

Figure S7 CV and DPV curves for (carbene)Ag(carbazolyl) in DMF

Figure S8 CV and DPV curves for (carbene)Au(carbazolyl) in DMF

Complex	Me-Cu	Me-Cu ^{CN}	Ph-Cu	Ph-Cu ^{CN}
$E_{\rm ox}^{a}$	0.21	0.46	0.24	0.48
$E_{\rm red}{}^{\rm a}$	-2.37	-2.32	-2.07, -2.58	-2.06, -2.60
$E_{\text{ox-red}}^{\text{b}}$	2.58	2.78	2.31	2.54
Complex	Me-Ag	Me-Ag ^{CN}	Ph-Ag	Ph-Ag ^{CN}
$E_{\rm ox}^{a}$	0.14	0.39	0.16	0.40
$E_{\rm red}{}^{\rm a}$	-2.33	-2.31	-2.05, -2.59	-2.03, -2.56
$E_{\text{ox-red}}^{\mathbf{b}}$	2.47	2.70	2.21	2.43
Complex	Me-Au ^c	Me-Au ^{CN}	Ph-Au	Ph-Au ^{CN}
$E_{\rm ox}{}^{\rm a}$	0.33	0.62	0.32	0.60
$E_{\rm red}^{\rm a}$	-2.31	-2.25	-2.04, -2.59	-2.00, -2.53
E _{ox-red} ^b	2.64	2.87	2.36	2.60

Table S2 Electrochemical data of the coinage metal complexes

^a Potential values were obtained from DPV measurement using ferrocene/ferrocenium as internal reference whose potentials were adjusted as 0V; ^b The first reduction potential was used to calculated the gap when two reductions were observed; ^c Known data from reference⁶

Molecular modeling

All the theoretical calculations were carried out using Q-Chem 5.1 program as in gas phase and visualized using IQmol software. The ground state molecular geometries were optimized at the B3LYP/LACVP* level, followed by the TD-DFT calculations based on the optimized structures at the CAM-B3LYP/LACVP* level, aiming for the insight of vertical transitions. The geometries of the calculated structures were verified as true minima by vibrational analysis. The CAM-B3LYP functional ($\Omega = 0.17$) was found to replicate absorptions energies for the ¹ICT transitions in these derivatives. Details of NTOs were obtained by another TD-DFT calculations at the same level, and the NTO overlap values were calculated using the NTOverlap software written by Dr. Daniel Sylvinson as described in the supporting information of previous publication.⁷ All the plots are provided with hydrogen atoms omitted for clarity. Isovalues for the NTO contours were set to 0.100.

Complex	НОМО	LUMO	LUMO+1
Me-Cu	-4.22eV	-1.99eV	-1.58eV
Me-Cu ^{CN}	-4.71eV	-2.20eV	-1.80eV
Ph-Cu	-4.19eV	-2.26eV	-1.69eV
Ph-Cu ^{CN}	-4.68eV	-2.45eV	-1.90eV
Me-Ag	-4.11eV	-2.07eV	-1.69eV
Me-Ag ^{CN}	-4.63eV	-2.26e V	-1.88eV
Ph-Ag	-4.08eV	-2.37eV	-1.74eV

Table S3 Plots of the frontier molecular orbitals

Ph-Ag ^{CN}	-4.57e V	-2.53eV	-1.93eV
Me-Au	-4.38eV	-1.99eV	-1.61eV
Me-Au ^{CN}	-4.84eV	-2.20eV	-1.82eV
Ph-Au	-4.35eV	-2.26eV	-1.69eV
Ph-Au ^{CN}	-4.82e V	-2.48eV	-1.90eV

Table S4 Calculated vertical transition properties of the S_1 and T_1 states

Complex	State	Energy (eV/nm)	Osc. strength	Major contribution	
Ma Cu	c	2 40 / 517	0 1061	HOMO→LUMO (88%)	
	\mathbf{S}_1	2.407 317	0.1001	HOMO→LUMO+1 (11%)	
Me-Cu	т	2 17 / 571	0.0000	HOMO→LUMO (80%)	
	11	11	2.177371	0.0000	HOMO→LUMO+1 (15%)
	c	267/161	0.1110	HOMO→LUMO (88%)	
Ma CuCN	S ₁	2.077404	0.1110	HOMO→LUMO+1 (10%)	
Me-Cu	т	2 47 / 502	0.0000	HOMO→LUMO (81%)	
	11	2.477 302	0.0000	HOMO→LUMO+1 (13%)	
	S	2 28 / 511	0.0759 0.0000	HOMO→LUMO (82%)	
Ph Cu	S 1	2.207 344		HOMO→LUMO+1 (17%)	
I II-Cu	т	2 10 / 501		HOMO→LUMO (62%)	
	11	2.10/ 391		HOMO→LUMO+1 (33%)	
	S	2 58 / 481	0.0957	HOMO→LUMO (78%)	
Ph CuCN		2.307 401	0.0007	HOMO→LUMO+1 (20%)	
I II-Cu	т	2 / 3 / 510	0.0000	HOMO→LUMO (62%)	
	11	2.457 510	0.0000	HOMO→LUMO+1 (32%)	
	S	2 34 / 530	0.0726	HOMO→LUMO (86%)	
Mada	2.34/330 0.0/20	0.0720	HOMO→LUMO+1 (13%)	
Me-Ag	т	2 22 / 556	0.0000	HOMO→LUMO (80%)	
	11	2.257 550	0.0000	HOMO→LUMO+1 (18%)	
Me-Ag ^{CN}	S_1	2.66 / 466	0.0759	HOMO→LUMO (86%)	

				HOMO→LUMO+1 (13%)
	т	2 57 / 182	0.0000	HOMO→LUMO (81%)
	11	2.377403	0.0000	HOMO→LUMO+1 (16%)
	S	2 20 / 564	0.0463	HOMO→LUMO (89%)
Dh Ag		2.207 304	0.0403	HOMO→LUMO+1 (10%)
I II-Ag	т	2 12 / 585	0.0000	HOMO→LUMO (78%)
	11 2.127 385	0.0000	HOMO→LUMO+1 (20%)	
	S	251/188	0.0471	HOMO→LUMO (85%)
Dh AgCN	S 1	2.347400	0.0471	HOMO→LUMO+1 (14%)
I II-Ag	т	2 48 / 500	0.0000	HOMO→LUMO (77%)
	11	2.467 500	0.0000	HOMO→LUMO+1 (21%)
	C	2 50 / 470	0.1647	HOMO→LUMO (89%)
Мо Ан	S 1	2.397479	0.1047	HOMO→LUMO+1 (10%)
Me-Au	т	2 22 / 525	0.0000	HOMO→LUMO (81%)
	11 2.327 333	0.0000	HOMO→LUMO+1 (15%)	
	S	2 83 / 138	0 1610	HOMO→LUMO (88%)
Mo AuCN	S1	2.037430	0.1019	HOMO→LUMO+1 (10%)
NIC-Au	Т.	2 61 / 475	0.0000	HOMO→LUMO (82%)
	1]	2.017475	0.0000	HOMO→LUMO+1 (13%)
	c	2 16 / 501	0.1126	HOMO→LUMO (85%)
Ph Au	2.407 304	0.1150	HOMO→LUMO+1 (14%)
I II-Au	т	2 25 / 551	0.0000	HOMO→LUMO (63%)
	11	2.237 331	0.0000	HOMO→LUMO+1 (33%)
	S	2 73 / 454	0.1277	HOMO→LUMO (81%)
Dh AnCN	2.737434	0.1277	HOMO→LUMO+1 (17%)
1 II-Au	т	2 55 / 186	0.0000	HOMO→LUMO (63%)
	11	2.337 400	0.0000	HOMO→LUMO+1 (31%)

Table S5 Calculated singlet-triplet energy gaps

Complex	$\Delta E_{\rm ST}$ (eV)	Complex	$\Delta E_{\rm ST}$ (eV)	Complex	$\Delta E_{\rm ST}$ (eV)
Me-Cu	0.23	Me-Ag	0.11	Me-Au	0.27
Me-Cu ^{CN}	0.20	Me-Ag ^{CN}	0.09	Me-Au ^{CN}	0.22
Ph-Cu	0.18	Ph-Ag	0.08	Ph-Au	0.21
Ph-Cu ^{CN}	0.15	Ph-Ag ^{CN}	0.06	Ph-Au ^{CN}	0.18
$\Delta E_{\rm ST}$ is the energetic difference between the S ₁ and T ₁ states whose energies are obtained as the vertical					

transition energies from the TD-DFT calculations at CAM-B3LYP/LACVP* level

Complex	S1	T1
Me-Cu	ICT (2.40eV, 98.9%)	ICT (2.17eV, 99.0%)
Me-Cu ^{CN}	ICT (2.67eV, 99.1%)	ICT (2.47eV, 98.5%)
Ph-Cu	ICT (2.28eV, 99.3%)	ICT (2.10eV, 99.0%)
Ph-Cu ^{CN}	ICT (2.58eV, 99.4%)	ICT (2.42eV, 98.4%)
Me-Ag	ICT (2.34eV, 99.4%)	ICT (2.23eV, 99.4%)
Me-Ag ^{CN}	ICT (2.66eV, 99.6%)	ICT (2.57eV, 98.9%)
Ph-Ag	ICT (2.20eV, 99.8%)	ICT (2.12eV, 99.6%)
Ph-Ag ^{CN}	ICT (2.53eV, 99.7%)	ICT (2.48eV, 99.2%)
Me-Au	ICT (2.598eV, 98.7%)	ICT (2.32eV, 98.6%)

Table S6 Natural transition orbitals analyses of the $S_1 \mbox{ and } T_1 \mbox{ state }$

Me-Au ^{CN}	ICT (2.82eV, 98.9%)	ICT (2.61eV, 97.6%)
Ph-Au	ICT (2.46eV, 99.1%)	ICT (2.25eV, 98.6%)
Ph-Au ^{CN}	ICT (2.73eV, 99.2%)	ICT (2.55eV, 97.4%)
Green for h	ole and yellow for electron	

Photophysics

Absorption spectra were recorded in dilute CH_2Cl_2 and toluene solution (around 5×10^{-5} mol/L) using a Hewlett-Packard 8453 diode array spectrometer. Steady state photoluminescent emission spectra were measured in dilute toluene at room temperature and in methyl cyclohexane (MeCy) at both room temperature and 77K on a Photon Technology International QuantaMaster model C-60 fluorimeter. Transient photoluminescent lifetimes were measured on an IBH Fluorocube instrument using time-correlated single-photon counting method (TCSPC) for those less than 100ms and multichannel scaling method (MSC) for those longer than 100ms. Photoluminescent quantum yields were determined using a Hamamatsu C9920 system equipped with a xenon lamp, calibrated integrating sphere and model C10027 photonic multichannel analyzer (PMA). Temperature-dependent lifetime measurements from 200 to 310 K were measured using IBH Fluorocube instrument in an OptistatDN Oxford cryostat. All fluid samples for luminescent measurements were deaerated by bubbling N₂. Doped polymer films (1wt%) were prepared in toluene solution of polystyrene (PS). The polymer solution with samples were dropcast onto a quartz substrate and the films were air-dried for 3h and completely dried under vacuum. The emission properties of polymer samples were measured under a stream of N2 during the measurements.

Strickler Berg analysis of radiative rates.

Strickler-Berg analysis, which has been proven successful for organic fluorophores, takes extinction spectral data to estimate oscillator strength for the transition between ground state and the first singlet excited state. Then, radiative decay rate for emission can be predicted in turn. The analysis requires the following data: absorption maximum in wavenumbers, integrated area of the S_0 - S_1 transition in wavenumbers and the extinction coefficient in L mol⁻¹ cm⁻¹. Here, the integrated area is estimated by integrating half of the low energy ICT absorption band and double it numerically aiming to avoiding the overlap with the high-energy ligand-based absorption. The equation used is shown below:

$$k_{fl} = 2.88 \times 10^{-9} \vartheta_0^2 \int \varepsilon d\vartheta$$

Where k_{fl} is the predicted radiative decay rate, ϑ_0 is the wavenumber of the absorption maximum, ε is the molar extinction coefficient.

Figure S9 Absorption spectra of all the complexes in toluen

Figure S10 Absorption spectra in toluene and the theoretical calculations of k_r based on the Strickler-Berg equation for (carbene)Cu(carbazolyl) complexes.

Figure S11 Absorption spectra in toluene and the theoretical calculations of k_r based on the Strickler-Berg equation for (carbene)Ag(carbazolyl) complexes.

Figure S12 Absorption spectra in toluene and the theoretical calculations of $\mathbf{k}_{\rm r}$ based on the Strickler-Berg equation

Figure S13 Absorption spectra in CH₂Cl₂ for (carbene)Cu(carbazolyl) complexes.

Figure S14 Absorption spectra in CH₂Cl₂ for (carbene)Ag(carbazolyl) complexes.

Figure S15 Absorption spectra in CH₂Cl₂ for (carbene)Au(carbazolyl) complexes.

Figure S16 Emission spectra of the (carbene)Cu(carbazolyl) complexes

Figure S17 Emission spectra of the (carbene)Ag(carbazolyl) complexes

Figure S18 Emission spectra of the (carbene)Au(carbazolyl) complexes

Figure S19 Emission spectra in doped PS film at room temperature (solid) and 77K (dash)

C 1	$\begin{array}{c c} \hline \\ \hline $		at 77K				
Complex	λ_{max} (nm)	τ (μs)	$\Phi_{ m PL}$	$k_{\rm r} ({\rm s}^{-1})$	k_{nr} (s ⁻¹)	λ_{max} (nm)	τ (μs)
	<u> </u>			MeCy	<u> </u>	<u> </u>	
Me-Cu	524, 550	1.8	0.73	4.1×10 ⁵	1.5×10 ⁵	490	143
Me-Cu ^{CN}	470, 496	1.5	0.63	4.2×10 ⁵	2.5×10 ⁵	459	66
Ph-Cu	552	0.87	0.50	5.7×10 ⁵	5.7×10 ⁵	519	127ª
Ph-Cu ^{CN}	488	1.1	0.73	6.6×10 ⁵	2.4×10 ⁵	486	74
Me-Ag	533 <i>sh</i> , 558	0.42	0.44	1.0×10^{6}	1.3×10^{6}	434, 493	12000ª
Me-Ag ^{CN}	470 <i>sh</i> , 494	0.43	0.67	1.6×10^{6}	7.7×10 ⁵	434, 463, 497	9000ª
Ph-Ag	572	0.32	0.26	8.1×10 ⁵	2.3×10 ⁶	522	3.1
Ph-Ag ^{CN}	504	0.61	0.55	9.0×10 ⁵	7.4×10 ⁵	433, 466, 490	22000ª
Me-Au	518, 534	1.4	0.71	5.1×10 ⁵	2.1×10 ⁵	486	60
Me-Au ^{CN}	464, 486	0.97	0.67	6.9×10 ⁵	3.4×10 ⁵	424, 452	328ª
Ph-Au	542	0.80	0.60	7.5×10 ⁵	5.0×10 ⁵	507	85
Ph-Au ^{CN}	482	0.85	0.76	8.9×10 ⁵	2.8×10 ⁵	469	54
	-		1ห	vt% doped PS fil	m	-	_
Me-Cu	534	1.5	0.58	3.9×10 ⁵	2.8×10 ⁵	527	265
Me-Cu ^{CN}	482	1.4	0.77	5.5×10 ⁵	1.6×10 ⁵	482	108
Ph-Cu	556	0.97	0.70	7.2×10 ⁵	3.1×10 ⁵	547	93
Ph-Cu ^{CN}	500	1.1	0.83	7.5×10 ⁵	1.5×10 ⁵	494	115
Me-Ag	530	0.41	0.77	1.9×10^{6}	5.6×10 ⁵	516	7.2
Me-Ag ^{CN}	476	0.41	0.83	2.0×10^{6}	4.1×10 ⁵	464	6000ª
Ph-Ag	558	0.53	0.56	1.1×10^{6}	8.3×10 ⁵	544	2.7
Ph-Ag ^{CN}	498	0.60	0.88	1.5×10^{6}	2.0×10 ⁵	487	3.0
Me-Au	528	1.1	0.50	4.5×10 ⁵	4.5×10 ⁵	526	82
Me-Au ^{CN}	484	0.81	0.50	6.2×10 ⁵	6.2×10 ⁵	478	57
Ph-Au	554	0.80	0.77	9.6×10 ⁵	2.9×10 ⁵	544	47
Ph-Au ^{CN}	504	0.82	1.00	1.2×10^{6}	< 0.1×10 ⁵	498	68
^a calculated	l as a weighted	average	of the two	o contributions f	rom a biexpon	ential decay trace	at
emission m	naximum						

Table S7 Complete emissive photophysical properties in MeCy and 1wt% doped PS film

Table S8 Φ_{PL} values of the doped PS films under air and N₂

I HOLE SO IFL										
Complex	in air	in N ₂	Complex	in air	in N ₂					
Me-Cu	0.45	0.58	Me-Cu ^{CN}	0.61	0.77					
Ph-Cu	0.56	0.70	Ph-Cu ^{CN}	0.70	0.83					
Me-Ag	0.68	0.77	Me-Ag ^{CN}	0.71	0.83					
Ph-Ag	0.45	0.56	Ph-Ag ^{CN}	0.77	0.88					
Me-Au	0.39	0.50	Me-Au ^{CN}	0.43	0.50					
Ph-Au	0.63	0.77	Ph-Au ^{CN}	0.88	1.00					
Φ_{PL} values in N ₂	were recorded w	hen the PS film sa	mples were fixed	under N ₂ stream						

Commlay		E	mission at ro	om temperature	
Complex	λ_{max} (nm)	τ (μs)	$\Phi_{ ext{PL}}$	$k_{\rm r} ({\rm s}^{-1})$	k_{nr} (s ⁻¹)
Me-Cu	552	1.5	0.66	4.4×10 ⁵	2.3×10 ⁵
Me-Cu ^{CN}	502	1.3	0.84	6.5×10 ⁵	1.2×10 ⁵
Ph-Cu	590	0.17	0.10	5.9×10 ⁵	5.3×10 ⁶
Ph-Cu ^{CN}	524	0.86	0.66	7.7×10 ⁵	4.0×10 ⁵
Me-Ag	578	0.18	0.23	1.3×10^{6}	4.3×10 ⁶
Me-Ag ^{CN}	522	0.39	0.73	1.9×10 ⁶	6.9×10 ⁵
Ph-Ag	610	0.038	0.02	5.3×10 ⁵	2.6×10 ⁷
Ph-Ag ^{CN}	548	0.40	0.38	9.5×10 ⁵	1.6×10^{6}
Me-Au	546	1.1	0.59	5.4×10 ⁵	3.7×10 ⁵
Me-Au ^{CN}	502	0.87	0.71	8.2×10 ⁵	3.3×10 ⁵
Ph-Au	582	0.19	0.15	7.9×10 ⁵	4.5×10 ⁶
Ph-Au ^{CN}	522	0.66	0.74	1.1×10^{6}	3.9×10 ⁵

Table S9 Emission properties in toluene

Figure S20 Full kinetic fits of the temperature dependent lifetime from 210 to 310 K for (carbae)Cu(carbazolyl) complexes.

Figure S21 Full kinetic fits of the temperature dependent lifetime from 210 to 310 K for (carbene)Ag(carbazolyl) complexes.

Figure S22 Full kinetic fits of the temperature dependent lifetime from 210 to 310 K for (carbae)Au(carbazolyl) complexes

Commlaw	NTO	đ	τ	k _r	λ_{max}^{em}	E _{em}	$k_{\rm r}/{\rm E}^3$	k_r^{ICT}	ΔE_{ST}
Complex	overlap	Ψ_{PL}	(µs)	(s ⁻¹)	(nm)	(eV)	$(s^{-1}eV^{-3})$	(s ⁻¹)	(meV)
Me-Cu	0.377	0.58	1.5	3.8×10 ⁵	534	2.32	3.0×10 ⁴	1.3×10 ⁷	64
Me-Cu ^{CN}	0.361	0.77	1.4	5.4×10 ⁵	480	2.58	3.1×10 ⁴	3.8×10 ⁷	83
Ph-Cu	0.311	0.70	0.98	7.2×10 ⁵	556	2.23	6.5×10^{4}	1.9×10 ⁷	55
Ph-Cu ^{CN}	0.301	0.83	1.1	7.3×10 ⁵	500	2.48	4.8×10^{4}	1.9×10 ⁷	55
(CAAC)CuCz ³	0.379	-	-	3.5×10 ⁵	474	2.62	1.9×10 ⁴	1.4×10^{7}	73
(MAC)CuCz ⁴	0.366	-	-	6.4×10 ⁵	506	2.45	4.3×10 ⁴	3.6×10 ⁷	71
Me-Ag	0.268	0.77	0.41	1.9×10 ⁶	530	2.34	1.5×10 ⁵	9.5×10 ⁶	14
Me-Ag ^{CN}	0.272	0.83	0.41	2.0×10^{6}	476	2.60	1.1×10^{5}	1.3×10^{7}	16
Ph-Ag	0.212	0.56	0.53	1.1×10^{6}	558	2.22	9.6×10 ⁴	5.5×10^{6}	14
Ph-Ag ^{CN}	0.211	0.88	0.60	1.5×10^{6}	498	2.49	9.5×10 ⁴	6.7×10^{6}	10
(CAAC)AgCz ⁵	0.288	-	-	2.0×10^{6}	472	2.63	1.1×10^{5}	1.2×10^{7}	19
(MAC)AgCz ⁵	0.280	-	-	2.4×10^{6}	512	2.42	1.7×10^{5}	2.2×10^{7}	22
Me-Au	0.411	0.50	1.1	4.7×10^{5}	528	2.35	3.6×10 ⁴	2.5×10^{7}	75
Me-Au ^{CN}	0.391	0.50	0.81	6.1×10 ⁵	484	2.56	3.6×10 ⁴	3.7×10 ⁷	78
Ph-Au	0.342	0.77	0.79	9.6×10 ⁵	554	2.24	8.6×10 ⁴	2.8×10 ⁷	59
Ph-Au ^{CN}	0.364	1.0	0.82	1.2×10^{6}	504	2.46	8.2×10 ⁴	3.8×10 ⁷	61
(CAAC)AuCz ⁵	0.418	-	-	8.8×10 ⁵	472	2.63	4.9×10 ⁴	4.0×10 ⁷	71
(MAC)AuCz ⁵	0.400	-	-	1.0×10^{6}	512	2.42	7.0×10^{4}	4.2×10 ⁷	71
Au-1c ⁸	0.333	-	-	5.8×10 ⁵	620	2.00	7.3×10 ⁴	6.7×10^{7}	100
Au-2d ⁸	0.373	-	-	2.2×10 ⁵	504	2.46	1.5×10^{4}	4.2×10 ⁷	119
Au-2d-Me ⁸	0.381	-	-	1.9×10 ⁵	520	2.38	1.4×10^{4}	3.0×10 ⁷	105
Au-2e ⁸	0.367	-	-	2.4×10^{5}	544	2.28	2.0×10^{4}	4.0×10 ⁷	109
Au-2e-Me ⁸	0.373	-	-	2.0×10^{5}	554	2.24	1.8×10^{4}	4.0×10 ⁷	113
Au ^{CC6}	0.289	-	-	1.5×10^{6}	480	2.58	8.7×10^{4}	3.1×10 ⁷	50

Table S10 Complete photophysical properties of TADF coinage metal complexes including reported examples

The relative PLQY Φ_{PL} at different temperature is calculated according to the following equation

$$\Phi_{\rm PL} = \frac{A}{A_{295K}} \times \Phi_{\rm PL,29}$$

 $\Phi_{PL} = {}^{A}{}_{295K} \Phi_{PL,295K}$ where A and A_{295K} are the integrated emission spectra area at the corresponding temperature and 295K, respectively. $\Phi_{PL,295K}$ is the absolute PLQY at 295K.

Temperature (K)	Me-Cu	Me-Cu ^{CN}	Ph-Cu	Ph-Cu ^{CN}
210	0.69	0.68	0.72	0.89
220	0.68	0.69	0.72	0.88
230	0.66	0.70	0.72	0.87
240	0.65	0.72	0.72	0.88
250	0.63	0.73	0.72	0.88
260	0.62	0.74	0.73	0.8
270	0.61	0.75	0.73	0.88
280	0.60	0.74	0.73	0.86
290	0.58	0.76	0.74	0.84
300	0.57	0.77	0.70	0.82
310	0.55	0.77	0.69	0.81
Temperature (K)	Me-Ag	Me-Ag ^{CN}	Ph-Ag	Ph-Ag ^{CN}
210	0.94	0.88	0.59	0.92
220	0.92	0.86	0.58	0.92
230	0.90	0.85	0.58	0.91
240	0.85	0.85	0.58	0.91
250	0.84	0.84	0.58	0.92
260	0.82	0.83	0.58	0.91
270	0.81	0.83	0.57	0.90
280	0.80	0.82	0.57	0.89
290	0.78	0.81	0.57	0.88
300	0.76	0.84	0.55	0.88
310	0.74	0.83	0.55	0.86
Temperature (K)	Me-Au	Me-Au ^{CN}	Ph-Au	Ph-Au ^{CN}
210	0.54	0.78	0.75	1.0
220	0.54	0.48	0.75	1.0
230	0.54	0.49	0.76	1.0
240	0.53	0.50	0.76	1.0
250	0.53	0.50	0.77	1.0
260	0.52	0.50	0.77	1.0
270	0.52	0.50	0.77	1.0
280	0.51	0.50	0.77	1.0
290	0.51	0.50	0.77	1.0
300	0.50	0.50	0.76	1.0
310	0.49	0.50	0.75	1.0

Table S11 Relative Φ_{PL} in doped PS film at different temperature

Figure S23 TADF radiative decay rate as a function of NTO overlap with structures of reported molecules

Figure S24 Relationship between calculated $k_r^{S_1}$ by Strickler-Berg equation and Osc. Strength based on the new coinage metal complexes

Figure S25 Relationship between the experimentally fitted $k_r^{s_1}$ and calculated $k_r^{s_1}$ by Strickler-Berg equation

Figure S26 Relationship between experimental and theoretically calculated ΔE_{ST}

Acronym	Molecular structure	NTO over lap	ΔE _{ST} (Exp.)	ΔE _{ST} (Cal.)	k _r (S1) (s ⁻¹)	ISC rate (s ⁻¹)	k _r (TADF) (s ⁻¹)	Ref.
4CzIPN	N Cz N Cz Cz Cz	0.38 02	0.04 eV in toluene	0.25 eV	1.8E7	k _{ISC} 7.0E7 k _{RISC} 8.8E5	1.41E5	9
5CzBN	Cz Cz Cz Cz Cz Cz	0.33 36	0.17eV in toluene	0.17 eV	1.9E7	k _{ISC} 25E7 k _{RISC} 2.2E5	1.45E4	9
3Cz2DPhCzBN	$Ph \qquad \qquad$	0.39 00	0.15eV in toluene	0.37 eV	1.5E7	k _{ISC} 15E7 k _{RISC} 7.2E5	5.90E4	10
5Cz-TRZ	$\begin{array}{c} Ph \\ N \\ N \\ Cz \\ Cz \\ Cz \\ Cz \\ Cz \end{array} \begin{array}{c} Cz \\ Cz \\ Cz \end{array}$	0.29 56	0.06eV in toluene	0.31 eV	0.544E 7	k _{ISC} 17E7 k _{RISC} 1.5E7	4.84E5	11
n-DABNA		0.58 64	0.017eV in toluene	0.45 eV	20E7	k _{ISC} 2.3E7 k _{RISC} 2.0E5	1.95E4	12

Table S12 Photophysical properties of some reported highly efficient organic TADF molecules

ТМС2-ВО		0.22 36	0.020eV in 30% doped PPF	0.21 eV	1.7E7	k _{ISC} 0.9E7 k _{RISC} 19E5	4.27E5	13
Br-3-PXZ-XO		0.18 36	N/A	0.09 eV	0.68E7	k _{ISC} 19E7 k _{RISC} 260E5	8.57E5	14
DiKTa		0.58 52	0.20eV in 3.5% doped mCP	0.79 eV	4.9E7	k _{ISC} 0.75E7 k _{RISC} 0.46E5	1.13E4	15
DMAC-DPS	AND	0.20 06	0.08eV in toluene	0.05 eV	On the order of E7	k _{ISC} 3.7E7	9.01E4	16
МХАс-СМ		0.18 60	0.08eV in 25% doped PPF film	0.06 eV	1.1E7	k _{ISC} 2.0E7 k _{RISC} 6.7E5	1.52E5	17
AmT		0.17 04	0.034 eV In neat film	0.03 eV	1.7E6	k _{ISC} 3.3E6 k _{RISC} 1.3E6	8.33E4	18
MPAc-BS		0.23 55	0.023eV 50% doped PPF host matrix	0.54 eV	2.8E7	k _{ISC} 9.9E7 k _{RISC} 3.5E6	6E5	19
МРАс-ВО		0.26 33	0.024eV 50% doped PPF host matrix	0.68 eV	1.9E7	k _{ISC} 1.7E7 k _{RISC} 1.0E6	2.61E5	19
ТРА-ДСРР		0.52 81	0.13eV In toluene By emission onset differenc es	0.64 eV	10.7E7	N/A	N/A	20
BCzT		0.50 34	0.31eV In doped DPEPO film By emission	0.60 eV	18.2E7	k _{ISC} =2.7E7 k _{RISC} =4.0E3	4.27E3	21

		onset differenc es					
Ph3Cz-TRZ	0.42 05	0.11eV In 6 wt% doped DPEPO film	0.61 eV	1.6E7	k _{ISC} =2.9E7	N/A	22
DABNA-1	0.59 70	0.20eV In 1% doped mCBP film	0.57 eV	11.4E7	k _{ISC} =4.5E6 k _{RISC} =9.9E3	3.74E2	23
SpiroAc-TRZ	0.15 94	0.072 12% doped mCPCN film	0.04 eV	5.9E7	k _{ISC} =9.8E6 k _{RISC} =1.26E 5	1.00E5	24
DMAC-BP	0.20 65	0.07 In 10% doped mCP film	0.20 eV	N/A	N/A	N/A	25
DBT-BZ-DMAC	0.18 07	0.08eV in neat film	0.24 eV	2.5E7	k _{ISC} =1.6E7 k _{RISC} =4.6E5	2.75E5	26
ACRDSO2	0.13 53	0.058eV In 6% doped CBP	0.008 eV	2.4E7	k _{ISC} =5.11E6 k _{RISC} =9.6E4	4.94E4	27
PXZDSO2	0.15 99	0.048eV In 6% doped CBP	0.018 eV	2.8E7	k _{ISC} =6.2E6 k _{RISC} =4.6E4	5.80E4	27
PXZ-TRZ	0.16 08	0.08eV In 6% doped CBP film	0.012 eV	5E7	N/A	N/A	28

References

- 1. J. Wang, X. Cao, S. Lv, C. Zhang, S. Xu, M. Shi and J. Zhang, *Nat. Commun.*, 2017, **8**, 14625.
- 2. C. Zhang, F. Zhang, S. Lv, M. Shi and J. Zhang, New J. Chem., 2017, 41, 1889-1892.
- 3. R. Hamze, J. L. Peltier, D. Sylvinson, M. Jung, J. Cardenas, R. Haiges, M. Soleilhavoup, R. Jazzar, P. I. Djurovich, G. Bertrand and M. E. Thompson, *Science*, 2019, **363**, 601.
- 4. S. Shi, M. C. Jung, C. Coburn, A. Tadle, D. Sylvinson M. R, P. I. Djurovich, S. R. Forrest and M. E. Thompson, *J. Am. Chem. Soc.*, 2019, **141**, 3576-3588.
- R. Hamze, S. Shi, S. C. Kapper, D. S. Muthiah Ravinson, L. Estergreen, M.-C. Jung, A. C. Tadle, R. Haiges, P. I. Djurovich, J. L. Peltier, R. Jazzar, G. Bertrand, S. E. Bradforth and M. E. Thompson, J. Am. Chem. Soc., 2019, 141, 8616-8626.
- 6. T.-y. Li, D. G. Shlian, P. I. Djurovich and M. E. Thompson, *Chem. Eur. J.*, 2021, 27, 6191-6197.
- 7. A. C. Tadle, K. A. El Roz, C. H. Soh, D. Sylvinson Muthiah Ravinson, P. I. Djurovich, S. R. Forrest and M. E. Thompson, *Adv. Funct. Mater.*, 2021, **31**, 2101175.
- 8. T.-y. Li, D. S. Muthiah Ravinson, R. Haiges, P. I. Djurovich and M. E. Thompson, J. Am. Chem. Soc., 2020, **142**, 6158-6172.
- 9. H. Noda, X.-K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J.-L. Brédas and C. Adachi, *Nat. Mater.*, 2019, **18**, 1084-1090.
- 10. H. Noda, H. Nakanotani and C. Adachi, *Sci. Adv.*, 2018, 4, 6910.
- 11. L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi and R. H. Friend, *Nat. Photonics*, 2020, **14**, 636-642.
- 12. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai and T. Hatakeyama, *Nat. Photonics*, 2019, **13**, 678-682.
- 13. J. U. Kim, I. S. Park, C.-Y. Chan, M. Tanaka, Y. Tsuchiya, H. Nakanotani and C. Adachi, *Nat. Commun.*, 2020, **11**, 1765.
- 14. N. Aizawa, Y. Harabuchi, S. Maeda and Y.-J. Pu, Nat. Commun., 2020, 11, 3909.
- D. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier and E. Zysman-Colman, *Adv. Opt. Mater.*, 2020, 8, 1901627.
- 16. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka and C. Adachi, *Nat. Photonics*, 2014, **8**, 326-332.
- 17. J. Lee, N. Aizawa and T. Yasuda, Chem. Mater., 2017, 29, 8012-8020.
- 18. S. Jeong, Y. Lee, J. K. Kim, D.-J. Jang and J.-I. Hong, J. Mater. Chem. C, 2018, 6, 9049-9054.
- 19. I. S. Park, K. Matsuo, N. Aizawa and T. Yasuda, *Adv. Funct. Mater.*, 2018, 28, 1802031.
- 20. S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu and Y. Wang, *Angew. Chem. Int. Ed.*, 2015, **54**, 13068-13072.
- 21. K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K. Tanaka, H. Kaji and C. Adachi, *The Journal of Physical Chemistry C*, 2015, **119**, 26283-26289.
- 22. S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki and C. Adachi, *Nat. Mater.*, 2015, **14**, 330-336.
- 23. T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono and T. Ikuta, *Adv. Mater.*, 2016, **28**, 2777-2781.
- 24. T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong and C.-C. Wu, *Adv. Mater.*, 2016, **28**, 6976-6983.
- 25. Q. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, S. Y. Lee, T. Yasuda and C. Adachi, *Adv. Mater.*, 2015, **27**, 2096-2100.
- 26. J. Guo, X.-L. Li, H. Nie, W. Luo, S. Gan, S. Hu, R. Hu, A. Qin, Z. Zhao, S.-J. Su and B. Z. Tang, *Adv. Funct. Mater.*, 2017, **27**, 1606458.
- 27. G. Xie, X. Li, D. Chen, Z. Wang, X. Cai, D. Chen, Y. Li, K. Liu, Y. Cao and S.-J. Su, *Adv. Mater.*, 2016, **28**, 181-187.
- 28. H. Tanaka, K. Shizu, H. Miyazaki and C. Adachi, *Chem. Commun.*, 2012, 48, 11392-11394.