New insights about structure/optical waveguide behavior relationships in linear bisethynylbenzenes

Carlos Tardío^a, Javier Álvarez-Conde^b, Iván Torres-Moya^a, Ana M. Rodríguez^a, Antonio de la Hoz^{a*}, Juan Cabanillas-Gonzalez^{b*}, Pilar Prieto^{a*}.

a) Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071, Ciudad Real, Spain. e-mail: MariaPilar.Prieto@uclm.es; Antonio.Hoz@uclm.es

 b) Madrid Institute for Advanced Studies, IMDEA Nanociencia, Calle Faraday 9,
 Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain. e-mail: Juan.Cabanillas@imdea.org

Supplementary information

1 F	Experimental section	2
1. L	General techniques	2
1.1.	General techniques	2
1.2.	Experimental procedures	3
2. P	PL in solid state	8
3. C	Computational study	8
4. S	SEM images	20
5. X	K-Ray diffraction studies	22
6. N	NMR spectra	35
7. R	References	48

1. Experimental section

1.1. General techniques

All reagents were used as purchased. Reaction with air-sensitive materials were carried out under an argon atmosphere. Microwave irradiations were performed in a Discover® (CEM) focused microwave reactor. Flash chromatography was carried out using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin layer chromatography (TLC) was performed using aluminium-coated Merck Kieselgel 60 F254 plates.

¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance Neo NMR spectrometers operating at 399.77 and 500.16 MHz for ¹H and 100.53 and 125.75 MHz for ¹³C, respectively. All spectra were performed at 298 K using partially deuterated solvents as internal reference. Coupling constants (J) are denoted in hertz (Hz) and chemical shifts (δ) in ppm. Multiplicities are denoted as: s = singlet, d = doublet, t = triplet, q = quadruplet, quint = quintuplet, sext = sextet and m = multiplet.

UV–visible and fluorescence spectroscopy studies in solution state were conducted on a Jasco V-750 spectrophotometer and Jasco FP-8300 spectrofluorometer, respectively. The absorption and emission spectra were recorded in chloroform at concentration of 10⁻⁵ M at room temperature using standard quart cells of 1 cm width and solvents of spectroscopic grade.

The melting points of the solid products were determined using a Büchi model M-569 melting point meter.

MALDI-TOF mass spectra were obtained on a Bruker Autoflex II TOF/TOF spectrometer employing dithranol as matrix. Samples, co-crystallized with the matrix on the probe, were ionized with a nitrogen laser pulse (337 nm) and accelerated under 20 kV with time-delayed extraction before entering the time-of-flight mass spectrometer. Matrix (10 mg/mL) and sample (1 mg/mL) were separately dissolved in tetrahydrofuran and mixed in a matrix/sample ratio ranging from 100:1 to 50:1. Typically, a 5 μ L mixture of matrix and sample was applied to a MALDI-TOF MS probe and air-dried. MALDI-TOF MS in positive reflector mode was used for all samples. External calibration was performed by using Peptide Calibration Standard II (covered mass range: 700–3200 Da) from Care (Bruker). The applied peak (m/z determination) detection method was the threshold centroid at 50% height of the peak maximum.

SEM images were obtained by a HRSEM Zeiss GeminiSEM 500 operating at 3 kV. The corresponding crystal, obtained by slow diffusion, was deposited onto a glass substrate and the remaining solvent was slowly evaporated.

X-ray diffraction data were collected on a Bruker X8 APEX II CCD-based diffractometer, equipped with a graphite monochromated MoK α radiation source (l = 0.71073 Å). Data were integrated using SAINT¹ and an absorption correction was performed with the program SADABS.² The structure was solved by a combination of direct methods and difference Fourier syntheses and refined by full-matrix least-squares on F2 with the WINGX and OLEX2 software packages.³⁻⁵ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions.

PL microscopy images were acquired with a Nikon Eclipse Ti inverted microscope with dry objectives (100X N.A. 0.8 and 20X N.A. 0.45) coupled to a Shamrock spectrometer from Andor Technology with a thermoelectrically cooled Newton EM (Andor) CCD. The excitation was obtained by appropriate filtering of the lines from a Xe lamp.

Loss coefficients in fibres were obtained upon exciting the fibres with a pulsed Nd:YAG laser (355 nm, 300 ps, 1 KHz, 30 μ J/pulse). A set of filters were employed to attenuate the photoexcitation. Detection from the fibre edge was focused in free space on to a 0.5 m length SP2558 Princeton Instruments (Acton Research) spectrometer equipped with a 600 lines/mm grating and a liquid nitrogen cooled CCD.

1.2 Experimental procedures

3b-e, 4a and **6** are commercially available and were used without further purification. Dibromobenzene **5** was synthesized as described by Devic and col.⁶ From **3b-e**, the arylethynylstannanes **4b-e** were synthesized as previously reported.⁷

- General procedure for the synthesis of derivatives 4

n-BuLi was added dropwise to a solution of the corresponding acetylene derivative (**3b**-**e**) in dry THF (-78 °C) under inert atmosphere. The mixture was stirred for 30 min. and then Bu₃SnCl was added dropwise. The reaction mixture was carried out to room temperature and stirred for 2 h. Then water (30 mL) was added to the crude reaction, neutralized with HCl 1M and the organic layers were extracted with dichloromethane

(3x30 mL). The organic layers were dried with MgSO₄, the solvent was removed in vacuo and the product was employed in the next step without previous purification.

- Tributyl((2-(trifluoromethyl)phenyl)ethynyl)stannane (4b)

From 1-ethynyl-2(trifluoromethyl)benzene (**3b**) (0.5 g, 2.94 mmol), n-BuLi (2.75 mL, 4.41 mmol) and Bu₃SnCl (0.96 mL, 3.52 mmol), a brown liquid was obtained (1.28 g, 95%). ¹H-NMR (CDCl₃, 400 MHz, ppm) δ: 7.59 (t, *J*= 7.6 Hz, 2H) 7.43 (t, *J*= 7.6 Hz, 1H), 7.33 (t, *J*= 7.6 Hz, 1H), 1.62 (quint, *J* = 7.0 Hz, 6H), 1.37 (sext, *J* = 7.2 Hz, 6H), 1.07 (t, *J*= 8.0 Hz, 6H), 0.92 (t, *J*= 7.2 Hz, 9H).

- Tributyl((2-methoxyphenyl)ethynyl)stannane (4c)

From 1-ethynyl-2-methoxybenzene (**3c**) (0.5 g, 3.78 mmol), n-BuLi (3.55mL, 5.67 mmol) and Bu₃SnCl (1.23 mL, 4.54 mmol), a yellow liquid was obtained (1.40 g, 88%). ¹H-NMR (CDCl₃, 400 MHz, ppm) δ: 7.41 (dd, *J*= 7.6, 1.6 Hz, 1H), 7.21 (td, *J*= 8.4, 1.6 Hz, 1H), 6.84 (m, 2H), 3.86 (s, 3H), 1.63 (quint, *J*= 7.6 Hz, 6H), 1.38 (sext, *J*= 7.6 Hz, 6H), 1.06 (t, *J*= 8 Hz, 6H), 0.92 (t, *J*= 7.6 Hz, 9H).

- Tributyl((4-(trifluoromethyl)phenyl)ethynyl)stannane (4d)

From 1-ethynyl-4-(trifluoromethyl)benzene (**3d**) (0.5 g, 2.94 mmol), n-BuLi (2.75 mL, 4.41 mmol) and Bu₃SnCl (0.96 mL, 3.52 mmol), a yellow liquid was obtained (1.24 g, 92%). ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.53 (bs, 4H), 1.61 (quint, *J*= 7.6 Hz, 6H), 1.37 (sext, *J*= 7.6 Hz, 6H), 1.05 (t, *J*= 7.6 Hz, 6H), 0.92 (t, *J*= 7.6 Hz, 9H).

- Tributyl((4-methoxyphenyl)ethynyl)stannane (4e)

From 1-ethynyl-4-methoxybenzene (**3e**) (0.5 g, 3.78 mmol), n-BuLi (3.55mL, 5.67 mmol) and Bu₃SnCl (1.23 mL, 4.54 mmol), a yellow liquid was obtained (1.35 g, 85%). ¹H-NMR (CDCl₃, 400 MHz, ppm) δ: 7.38 (d, *J*= 8.8 Hz, 2H), 6.80 (d, *J*= 8.8 Hz, 2H), 3.78 (s, 3H), 1.62 (quint, *J*= 7.6 Hz, 6H), 1.37 (sext, *J*= 7.2 Hz, 6H), 1.05 (t, *J*= 7.6 Hz, 6H), 0.92 (t, *J*= 7.2 Hz, 9H).

- General procedure for the synthesis of derivatives 1a-e

A mixture of 1,4-dibromo-2,5-bis(trifluoromethyl)benzene (5) (0.100 g, 0.27 mmol), the corresponding ethynylstannane **4** (0.69 mmol), PdCl₂(PPh₃)₂ (0.007 g, 0.01 mmol) and

LiCl (0.035 g, 0.08 mmol) was charged under inert atmosphere to a microwave vessel. CH_3CN (1 mL) was added, and the vessel was closed and irradiated at 110 °C for 20 min. The crude reaction was purified by column chromatography on silica gel, eluting with hexane/ethyl acetate to afford the pure products **1a-e**.

- 1,4-bis(phenylethynyl)-2,5-bis(trifluoromethyl)benzene (1a)

From tributyl(phenylethynyl)stannane (**4a**) (0.274 g, 0.69 mmol), **1a** was obtained as white solid (0.080 g, 72%) by chromatography, eluting with hexane. M. p.: 145-147 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.96 (s, 2H), 7.57 (m, 4H), 7.40 (m, 6H). ¹³C-NMR (CDCl₃, 100 MHz, ppm) δ : 134.2 (q, J_{C-F} = 31.32 Hz), 132.5, 131.9, 131.3 (q, J_{C-F} = 5.2 Hz), 129.5, 128.5, 122.6 (q, J_{C-F} = 272.3 Hz), 122.0, 98.4, 84.3. MS calcd for (C₂₄H₁₂F₆) M⁺ 414.0843, found 414.2806.

- 1,4-bis(2-trifluoromethylphenylethynyl)-2,5-bis(trifluoromethyl)benzene (1b)

From tributyl(2-trifluoromethylphenylethynyl)stannane (**4b**) (0.322 g, 0.69 mmol), **1b** was obtained as pale yellow solid (0.064 g, 43%) by chromatography, eluting with hexane/ethyl acetate 20:1. M. p.: 176-178 °C. ¹H- NMR (CDCl₃, 400 MHz, ppm) δ : 7.98 (s, 2H), 7.73 (d, *J*= 8.1 Hz, 4H), 7.58 (t, *J*= 7.6 Hz, 2H), 7.50 (t, *J*= 7.6 Hz, 2H). ¹³C-NMR (CDCl₃, 100 MHz, ppm) δ : 134.5, 134.3 (q, *J*_{C-F}= 31.3 Hz), 131.9 (q, *J*_{C-F}= 5.1 Hz), 131.8 (q, *J*_{C-F}= 31.0 Hz), 131.6 129.3, 126.1 (q, *J*_{C-F}= 5.0 Hz), 123.3 (q, *J*_{C-F}= 273.5 Hz), 122.3 (q, *J*_{C-F}= 271.3 Hz), 121.6, 120.0, 94.0, 89.1. MS calcd for (C₂₆H₁₀F₁₂) M⁺ 550.0590, found 550.2815.

- 1,4-bis(2-methoxyphenylethynyl)-2,5-bis(trifluoromethyl)benzene (1c)

From tributyl(2-methoxyphenylethynyl)stannane (**4c**) (0.295 g, 0.69 mmol), **1c** was obtained as yellow solid (0.090 g, 70%) by chromatography, eluting with hexane/ethyl acetate 20:1. M. p.: 178-180 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.97 (s, 2H), 7.51 (dd, *J*= 7.6, 1.6 Hz, 2H), 7.37 (td, *J*= 8.4, 1.6 Hz, 2H), 6.97 (td, *J*= 7.2, 1.2 Hz, 2H), 6.93 (d, *J*= 8.4 Hz, 2H), 3.93 (s, 6H). ¹³C-NMR (CDCl₃, 100 MHz, ppm) δ : 160.5, 133.9 (q, *J*_{C-F}= 30.0 Hz), 133.8, 131.3 (q, *J*_{C-F}= 5.2 Hz), 131.0, 122.7 (q, *J*_{C-F}= 270.0 Hz), 121.3, 120.6, 111.4, 110.9, 95.1, 88.3, 55.9. MS calcd for (C₂₆H₁₆F₆O₂) M⁺ 474.1054, found 474.3297.

- 1,4-bis(4-trifluoromethylphenylethynyl)-2,5-bis(trifluoromethyl)benzene (1d)

From tributyl(4-trifluoromethylphenylethynyl)stannane (4d) (0.322 g, 0.69 mmol), 1d was obtained as white solid (0.070 g, 47%) by chromatography, eluting with hexane. M. p.: 197-199 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 8.00 (s, 2H), 7.67 (AA'BB' *J*= 8.8 Hz, 8H). ¹³C-NMR (CDCl₃, 125 MHz, ppm) δ : 134.5 (q, *J*_{C-F}= 31.6 Hz), 132.1, 131.5 (q, *J*_{C-F}= 5.2 Hz), 131.2 (q, *J*_{C-F}= 32.3 Hz), 125.5 (q, *J*_{C-F}= 4.0 Hz), 123.7 (q, *J*_{C-F}= 270.5 Hz), 122.4 (q, *J*_{C-F}= 272.4 Hz), 121.1, 96.8, 86.1. MS calcd for (C₂₆H₁₀F₁₂) M⁺ 550.0590, found 550.2367.

- 1,4-bis(4-methoxyphenylethynyl)-2,5-bis(trifluoromethyl)benzene (1e)

From tributyl(4-methoxyphenylethynyl)stannane (**4e**) (0.295 g, 0.69 mmol), **1e** was obtained as yellow solid (0.085 g, 63%) by chromatography, eluting with hexane/ethyl acetate 20:1. M. p.: 180-181 °C. ¹H-NMR (CDCl₃, 500 MHz, ppm) δ : 7.91 (s, 2H), 7.51 (d, *J*= 8.5 Hz, 4H), 6.91 (d, *J*= 8.5 Hz, 4H), 3.85 (s, 6H). ¹³C-NMR (CDCl₃, 125 MHz, ppm) δ : 160.6, 133.7 (q, *J*_{C-F}= 31.1 Hz), 133.5, 131.0 (q, *J*_{C-F}= 5.2 Hz), 122.7 (q, *J*_{C-F}= 272.7 Hz), 121.1, 114.2, 114.1, 98.6, 83.5, 55.4. MS calcd for (C₂₆H₁₆F₆O₂) M⁺ 474.1054, found 474.3210.

- General procedure for the synthesis of derivatives 2a-e

A mixture of 1,4-dibromo-2,5-bismethoxybenzene (6) (0.100 g, 0.34 mmol), the corresponding ethynylstannane **4a-e** (0.87 mmol), $PdCl_2(PPh_3)_2$ (0.010 g, 0.013 mmol) and LiCl (0.043 g, 1.01 mmol) was charged under an inert atmosphere to a microwave vessel. CH₃CN (1 mL) was added, and the vessel was closed and irradiated at 110 °C for 20 min. The crude reaction was purified by column chromatography on silica gel, eluting with hexane/ethyl acetate to afford the pure products **2a-e**.

- 1,4-bis(phenylethynyl)-2,5-dimethoxybenzene (2a)

From tributyl(phenylethynyl)stannane (**4a**) (0.343 g, 0.87 mmol), **2a** was obtained as yellow solid (0.080 g, 70%) by chromatography, eluting with hexane/ethyl acetate 20:1. M. p.: 175-177 °C. ¹H-NMR (CDCl₃, 500 MHz, ppm) δ : 7.57 (dd, *J*= 7.9, 2.4, 4H), 7.35 (m, 6H), 7.04 (s, 2H), 3.91 (s, 6H). ¹³C-NMR (CDCl₃, 100 MHz, ppm) δ : 153.9, 131.7, 128.4, 128.3, 123.2, 115.7, 113.4, 95.0, 85.6, 56.5. MS calcd for (C₂₄H₁₈O₂) M⁺ 338.1307, found 338.3123.

- 1,4-bis(2-trifluoromethylphenylethynyl)-2,5-dimethoxybenzene (2b)

From tributyl(2-trifluoromethylphenylethynyl)stannane (**4b**) (0.404 g, 0.87 mmol), **2b** was obtained as white solid (0.092 g, 60%) by chromatography, eluting with hexane/ethyl acetate 9:1. M. p.: 123-124 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.70 (t, *J*= 8.6 Hz, 4H), 7.52 (t, *J*= 7.6 Hz, 2H), 7.42 (t, *J*= 7.7 Hz, 2H), 7.03 (s, 2H), 3.91 (s, 6H). ¹³C-NMR (CDCl₃, 125 MHz, ppm) δ : 154.3, 133.9, 131.4 (q, J_{C-F}= 30.3 Hz) 131.3, 128.1, 125.9 (q, *J*_{C-F}= 5.2 Hz), 123.6 (q, *J*_{C-F}= 271.9 Hz), 121.5, 115.9, 113.7, 91.3, 91.0, 56.3. MS calcd for (C₂₆H₁₆F6O₂) M⁺ 474.1054, found 474.2917.

- 1,4-bis(2-methoxyphenylethynyl)-2,5-dimethoxybenzene (2c)

From tributyl(2-methoxyphenylethynyl)stannane (**4c**) (0.370 g, 0.87 mmol), **2c** was obtained as white solid (0.103 g, 77%) by chromatography, eluting with hexane/ethyl acetate 6:1. M. p.: 125-127 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.53 (dd, *J*= 7.6, 1.7 Hz, 2H), 7.31 (td, *J*= 7.5, 1.7 Hz, 2H), 7.06 (s, 2H), 6.94 (td *J* = 7.6, 0.8 Hz, 2H), 6.91 (d *J* = 8.4 Hz, 2H), 3.94 (s, 6H), 3.91 (s, 6H). ¹³C-NMR (CDCl₃, 125 MHz, ppm) δ : 159.9, 153.9, 133.6, 129.9, 120.4, 115.6, 113.5, 112.4, 110.6, 91.4, 89.8, 56.6, 55.9. MS calcd for (C₂₆H₂₂O₄) M⁺ 398.1518, found 398.4101.

- 1,4-bis(4-trifluoromethylphenylethynyl)-2,5-dimethoxybenzene (2d)

From tributyl(4-(trifluoromethyl)phenylethynyl)stannane (**4d**) (0.404 g, 0.87 mmol), **2d** was obtained as yellow solid (0.093 g, 63%) by chromatography, eluting with hexane/ethyl acetate 20:1. M. p.: 172-174 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.64 (AA'BB', *J*= 8.2 Hz, 8H), 7.06 (s, 2H), 3.92 (s, 6H). ¹³C-NMR (CDCl₃, 100 MHz, ppm) δ : 154.1, 131.9, 130.1 (q, *J*_{C-F}= 32.5 Hz), 127.0, 125.3 (q, *J*_{C-F}= 3.9 Hz), 123.9 (q, *J*_{C-F}= 270.6 Hz) 115.7, 113.3, 93.8, 87.9, 56.5. MS calcd for (C₂₆H₁₆F₆O₂) M⁺ 474.1054, found 474.3445.

- 1,4-bis(4-methoxyphenylethynyl)- 2,5-dimethoxybenzene (2e)

From tributyl(4-methoxyphenylethynyl)stannane (**4e**) (0.370 g, 0.87 mmol), **2e** was obtained as yellow solid (0.085 g, 63%) by chromatography, eluting with hexane/ethyl acetate 6:1. M. p.: 165-166 °C. ¹H-NMR (CDCl₃, 400 MHz, ppm) δ : 7.51 (d, *J*= 8.8 Hz, 4H), 7.01 (s, 2H,), 6.88 (d, *J*= 8.8 Hz, 4H), 3.90 (s, 6H), 3.84 (s, 6H). ¹³C-NMR (CDCl₃, 125 MHz, ppm) δ : 159.7, 153.8, 133.2, 115.5, 115.4, 114.0, 113.3, 95.0, 84.4, 56.5, 55.3. MS calcd for (C₂₆H₂₂O₄) M⁺ 398.1518, found 398.5129.

2. PL in solid state

Figure S1: PL spectra of derivatives a) 1 and b) 2 in solid state.

3. Computational study

Computational calculations were carried out by means of Gaussian 16 software.⁸ The calculations were performed within the Density Functional Theory (DFT) framework.⁹ Geometry optimizations were carried out using the B3LYP¹⁰ functional and the medium-sized 6-31G (d,p) basis set as implemented in the Gaussian 16 program. Solvent effects were estimated using the polarizable continuum model¹¹ (PCM) within the self-consistent reaction field (SCRF) approach using chloroform ($\epsilon = 4.7113$) as solvent.

Table S1: Topologies of the HOMO-LUMO molecular orbitals and the HOMO-LUMO gap value calculated at B3LYP/6-31G(d,p) according to the CPCM method employing chloroform as solvent for derivatives **1** and **2**.

Compound	HOMO (eV)	LUMO (eV)	HOMO- LUMO gap (eV)
1a	-5.87	-2.35	3.52
ູ່ວະ ເຈົ້າອີດເຊື່ອດອດຊີ່ອາ ອີດີເອດຊີ່ອດອດຊີ່ອາ ອີດີເອດຊີ່ອດອດຊີ່ອາ ອີດີເອດຊີ່ອດອດຊີ່ອາ ອີດີເອດຊີ່ອີດອດຊີ່ອາ ອີດີເອດຊີ່ອີດອດຊີ່ອີດ		-2.59	3.51
	-5.72	-2.29	3.43

 Table S2: Cartesian coordinates for optimized geometry of 1a

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	0.770332	1.168735	-0.000136
2	6	0	-0.614601	1.247077	-0.000136
3	6	0	-1.418841	0.090944	-0.000044
4	6	0	-0.770310	-1.168372	0.000049
5	6	0	0.614623	-1.246714	0.000049
6	6	0	1.418862	-0.090581	-0.000043
7	1	0	-1.096465	2.216144	-0.000208
8	1	0	1.096487	-2.215782	0.000120
9	6	0	2.832056	-0.219167	-0.000044
10	6	0	-2.832035	0.219537	-0.000048
11	6	0	-4.043129	0.335305	-0.000050
12	6	0	4.043146	-0.334984	-0.000039
13	6	0	5.463761	-0.424969	0.000021
14	6	0	6.109087	-1.678207	0.000197

6	0	6.241861	0.751442	-0.000101
6	0	7.499500	-1.747470	0.000250
6	0	7.631198	0.670061	-0.000046
1	0	5.742968	1.714961	-0.000238
6	0	8.263378	-0.576837	0.000129
1	0	7.988928	-2.716513	0.000386
1	0	8.222827	1.580302	-0.000142
6	0	-5.463773	0.424853	0.000004
6	0	-6.241517	-0.751794	0.000152
6	0	-6.109477	1.677895	-0.000091
6	0	-7.630879	-0.670834	0.000204
1	0	-5.742334	-1.715163	0.000225
6	0	-7.499911	1.746737	-0.000038
6	0	-8.263435	0.575873	0.000109
1	0	-8.222233	-1.581254	0.000319
1	0	-7.989632	2.715631	-0.000112
6	0	1.585036	2.440222	-0.000232
6	0	-1.585013	-2.439860	0.000146
9	0	0.803246	3.541291	-0.000324
9	0	2.385323	2.522076	1.086186
9	0	2.385338	2.521905	-1.086653
9	0	-2.385310	-2.521545	1.086569
9	0	-0.803220	-3.540927	0.000235
9	0	-2.385302	-2.521715	-1.086271
1	0	-5.512782	2.584051	-0.000205
1	0	5.512118	-2.584182	0.000290
1	0	-9.347506	0.634682	0.000150
1	0	9.347431	-0.635974	0.000171
	6 6 1 6 1 1 6 6 6 1 6 6 1 1 6 6 9 9 9 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60 6.241861 60 7.499500 60 7.631198 10 5.742968 60 8.263378 10 7.988928 10 7.988928 10 8.222827 60 -5.463773 60 -6.109477 60 -7.630879 10 -5.742334 60 -7.499911 60 -7.989632 10 -8.222233 10 -7.989632 60 1.585013 90 0.803246 90 2.385323 90 2.385310 90 -2.385310 90 -2.385302 10 -5.512782 10 -5.512782 10 -9.347506 10 9.347431	60 6.241861 0.751442 60 7.499500 -1.747470 60 7.631198 0.670061 10 5.742968 1.714961 60 8.263378 -0.576837 10 7.988928 -2.716513 10 8.222827 1.580302 60 -5.463773 0.424853 60 -6.241517 -0.751794 60 -6.109477 1.677895 60 -7.630879 -0.670834 10 -5.742334 -1.715163 60 -7.499911 1.746737 60 -8.222233 -1.581254 10 -7.989632 2.715631 60 1.585013 -2.439860 90 2.385310 -2.521545 90 2.385310 -2.521545 90 -2.385302 -2.521715 10 -5.512782 2.584051 10 -5.512782 2.584182 10 -9.347506 0.634682 10 9.347431 -0.635974

Table S3: Cartesian coordinates for optimized geometry of 1b

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Ż
1	6	0	0.469041	1.319936	0.000012
2	6	0	-0.894435	1.066294	0.000015
3	6	0	-1.395357	-0.249857	0.000018
4	6	0	-0.469049	-1.319946	0.000015
5	6	0	0.894426	-1.066304	0.000011
6	6	0	1.395348	0.249847	0.000010
7	1	0	-1.597556	1.889216	0.000017
8	1	0	1.597548	-1.889225	0.000010
9	6	0	2.799890	0.450240	0.000007
10	6	0	-2.799898	-0.450255	0.000021
11	6	0	-4.009550	-0.566927	0.000034
12	6	0	4.009544	0.566899	0.000013
13	6	0	5.420455	0.745997	-0.000017
14	6	0	6.318656	-0.349433	-0.000020
15	6	0	5.945647	2.052079	-0.000041
16	6	0	7.693069	-0.124207	-0.000047
17	6	0	7.321491	2.264066	-0.000069
18	1	0	5,256748	2.889602	-0.000038

Standard orientation:

19	6	0	8.197179	1.177946	-0.000072
20	1	0	8.369849	-0.969977	-0.000049
21	1	0	7.708401	3.277946	-0.000088
22	1	0	9.270031	1.339135	-0.000093
23	6	0	-5.420464	-0.745999	0.000010
24	6	0	-5.945676	-2.052073	0.00009
25	6	0	-6.318650	0.349444	-0.000009
26	6	0	-7.321522	-2.264042	-0.000011
27	1	0	-5.256787	-2.889606	0.000025
28	6	0	-7.693066	0.124237	-0.000029
29	6	0	-8.197195	-1.177908	-0.000031
30	1	0	-7.708446	-3.277916	-0.000012
31	1	0	-8.369834	0.970016	-0.000043
32	1	0	-9.270049	-1.339083	-0.000047
33	6	0	5.788657	-1.760754	0.000009
34	6	0	-5.788630	1.760756	-0.000007
35	9	0	6.782639	-2.675091	-0.000001
36	9	0	5.020004	-2.012306	1.085824
37	9	0	5.019956	-2.012334	-1.085765
38	9	0	-5.019963	2.012314	1.085796
39	9	0	-5.019935	2.012306	-1.085792
40	9	0	-6.782598	2.675109	-0.000022
41	6	0	0.962175	2.747317	0.000012
42	6	0	-0.962184	-2.747326	0.000017
43	9	0	-0.055651	3.632824	0.000011
44	9	0	1.721869	3.011698	1.086310
45	9	0	1.721871	3.011697	-1.086285
46	9	0	-1.721878	-3.011706	1.086315
47	9	0	0.055642	-3.632834	0.000015
48	9	0	-1.721881	-3.011707	-1.086279

Table S4: Cartesian coordinates for optimized geometry of 1c
--

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Angstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	0.699986	1.518871	-0.010887
2	6	0	-0.686993	1.537293	0.000118
3	6	0	-1.442404	0.348919	0.036669
4	6	0	-0.739013	-0.880211	0.068590
5	6	0	0.648043	-0.899369	0.057286
6	6	0	1.403056	0.289124	0.015058
7	1	0	-1.209854	2.484603	-0.023119
8	1	0	1.171441	-1.846273	0.082676
9	6	0	2.819076	0.220608	0.001801
10	6	0	-2.860434	0.429447	0.037628
11	6	0	-4.071922	0.542810	0.026318
12	6	0	4.034170	0.153664	-0.010530
13	6	0	5.453491	0.150759	-0.028029
14	6	0	6.159726	1.367684	-0.072708
15	6	0	7.579118	-1.041866	-0.020229

16	6	0	7.550650	1.387579	-0.091098
17	1	0	5.590426	2.291201	-0.092669
18	6	0	8.252765	0.181016	-0.064664
19	1	0	8.147067	-1.963563	-0.000586
20	1	0	8.081523	2.332951	-0.125715
21	1	0	9.338478	0.183249	-0.078634
22	6	0	-5.487511	0.684969	0.030852
23	6	0	-6.085770	1.891759	0.449439
24	6	0	-7.469131	2.037047	0.448721
25	1	0	-5.446757	2.706744	0.773044
26	6	0	-7.708102	-0.217919	-0.399658
27	6	0	-8.281611	0.981959	0.022882
28	1	0	-7.913444	2.972020	0.774401
29	1	0	-8.322585	-1.042879	-0.745524
30	1	0	-9.361430	1.093898	0.015813
31	6	0	-6.322181	-0.373336	-0.400948
32	6	0	6.180869	-1.069176	-0.001661
33	8	0	-5.769584	-1.535293	-0.881766
34	8	0	5.433499	-2.201017	0.040716
35	6	0	-5.511038	-2.542186	0.108411
36	6	0	6.103831	-3.460582	0.069008
37	1	0	-5.097383	-3.397641	-0.427033
38	1	0	-4.781516	-2.194888	0.845712
39	1	0	-6.437278	-2.837868	0.614901
40	1	0	6.735072	-3.556629	0.959375
41	1	0	5.316838	-4.213995	0.099953
42	1	0	6.713986	-3.607996	-0.828983
43	6	0	1.458830	2.823445	-0.052759
44	6	0	-1.493717	-2.185393	0.139091
45	9	0	0.630331	3.889868	-0.073734
46	9	0	2.264901	2.968968	1.022945
47	9	0	2.245427	2.911172	-1.148881
48	9	0	-2.242168	-2.263545	1.266111
49	9	0	-2.336710	-2.340828	-0.905344
50	9	0	-0.666072	-3.251631	0.142523

 Table S5: Cartesian coordinates for optimized geometry of 1d

Standard	orientation
Scanuaru	Uniteritation.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.724134	1.198443	-0.000494
2	6	0	-0.662648	1.222871	0.006460
3	6	0	-1.419071	0.035232	0.007152
4	6	0	-0.724135	-1.198526	0.000521
5	6	0	0.662646	-1.222954	-0.006433
6	6	0	1.419070	-0.035315	-0.007126
7	1	0	-1.182370	2.172131	0.011512
8	1	0	1.182369	-2.172214	-0.011485
9	6	0	2.836569	-0.107753	-0.014207
10	6	0	-2.836570	0.107669	0.014229

11	6	0	-4.050786	0.173403	0.020161
12	6	0	4.050785	-0.173483	-0.020144
13	6	0	5.473322	-0.201635	-0.025854
14	6	0	6.172791	-1.424828	-0.028939
15	6	0	6.198851	1.007404	-0.031994
16	6	0	7.562577	-1.435967	-0.035000
17	6	0	7.588031	0.990117	-0.038264
18	1	0	5.661227	1.949130	-0.034367
19	6	0	8.271389	-0.230449	-0.039687
20	1	0	8.097102	-2.379123	-0.043011
21	1	0	8.141906	1.922099	-0.048975
22	6	0	-5.473322	0.201606	0.025861
23	6	0	-6.198893	-1.007407	0.031990
24	6	0	-6.172749	1.424824	0.028943
25	6	0	-7.588073	-0.990072	0.038246
26	1	0	-5.661302	-1.949151	0.034364
27	6	0	-7.562535	1.436011	0.034990
28	6	0	-8.271388	0.230517	0.039666
29	1	0	-8.141980	-1.922035	0.048948
30	1	0	-8.097027	2.379186	0.042998
31	6	0	1.490152	2.500630	-0.000602
32	6	0	-1.490154	-2.500713	0.000629
33	9	0	0.666580	3.569873	0.005853
34	9	0	2.291193	2.608191	1.082535
35	9	0	2.281491	2.613836	-1.090290
36	9	0	-2.281495	-2.613918	1.090315
37	9	0	-0.666581	-3.569956	-0.005825
38	9	0	-2.291192	-2.608274	-1.082509
39	1	0	-5.619410	2.357326	0.028982
40	1	0	5.619484	-2.357349	-0.028971
41	6	0	-9.774347	0.245101	-0.012922
42	6	0	9.774349	-0.244979	0.012886
43	9	0	-10.291328	1.349866	0.569903
44	9	0	-10.312783	-0.829229	0.606542
45	9	0	-10.231512	0.227773	-1.289199
46	9	0	10.312741	0.829362	-0.606595
47	9	0	10.231525	-0.227622	1.289158
48	9	0	10.291363	-1.349733	-0.569931

 Table S6: Cartesian coordinates for optimized geometry of 1e

Standard orientation:								
Center	Atomic	Atomic	Coord	dinates (Angs	stroms)			
Number	Number	Туре	Х	Y	Z			
1	6	0	0.730627	-1.117379	0.000053			
2	6	0	-0.655991	-1.151380	0.000057			
3	6	0	-1.425012	0.029161	0.000046			
4	6	0	-0.734285	1.266826	0.000033			
5	6	0	0.652285	1.300819	0.000030			
6	6	0	1.421351	0.120262	0.000041			
7	1	0	-1.167892	-2.104973	0.000067			

8	1	0	1.164188	2.254411	0.000019
9	6	0	2.836728	0.204332	0.000041
10	6	0	-2.840434	-0.054143	0.000052
11	6	0	-4.055546	-0.131966	0.000055
12	6	0	4.051767	0.283328	0.000039
13	6	0	5.471292	0.335338	0.000002
14	6	0	6.159390	1.569786	0.000048
15	6	0	6.226474	-0.852773	-0.000082
16	6	0	7.543099	1.606469	0.000015
17	6	0	7.617963	-0.822296	-0.000118
18	1	0	5.709979	-1.807045	-0.000121
19	6	0	8.285309	0.411905	-0.000068
20	1	0	8.078009	2.550254	0.000052
21	1	0	8.168353	-1.754870	-0.000186
22	6	0	-5.475382	-0.174691	0.000018
23	6	0	-6.224029	1.024982	0.000061
24	6	0	-6.170475	-1.397978	-0.000056
25	6	0	-7.607488	0.994079	0.000030
26	1	0	-5.700656	1.975385	0.000121
27	6	0	-7.562210	-1.435432	-0.000088
28	6	0	-8.289710	-0.235897	-0.000045
29	1	0	-8.188121	1.910447	0.000064
30	1	0	-8.066282	-2.393803	-0.000145
31	6	0	1.503170	-2.414043	0.000079
32	6	0	-1.506859	2.563579	0.00008
33	9	0	0.686661	-3.490287	0.000055
34	9	0	2.301100	-2.523231	-1.086254
35	9	0	2.301025	-2.523223	1.086469
36	9	0	-2.304657	2.672618	-1.086386
37	9	0	-0.690276	3.639693	0.000023
38	9	0	-2.304713	2.672632	1.086359
39	1	0	-5.611073	-2.327701	-0.000089
40	1	0	5.593488	2.495448	0.000113
41	8	0	-9.645661	-0.156172	-0.000069
42	8	0	9.635629	0.558749	-0.000099
43	6	0	-10.400099	-1.367488	-0.000154
44	6	0	10.449239	-0.613719	-0.000112
45	1	0	-10.194143	-1.966165	0.894212
46	1	0	-11.447499	-1.065792	-0.000167
47	1	0	-10.194093	-1.966071	-0.894571
48	1	0	11.480374	-0.260412	-0.000077
49	1	0	10.273140	-1.221841	0.894224
50	1	0	10.273185	-1.221791	-0.894491

 Table S7: Cartesian coordinates for optimized geometry of 2a

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Angs	troms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.719098	-1.187166	0.196684	
2	6	0	0.669591	-1.205051	0.201656	

3	6	0	1.419071	-0.027106	0.009614
4	6	0	0.719091	1.187000	-0.196811
5	6	0	-0.669598	1.204886	-0.201784
6	6	0	-1.419078	0.026941	-0.009739
7	1	0	1.179220	-2.148663	0.361615
8	1	0	-1.179228	2.148498	-0.361746
9	6	0	-2.839560	0.067376	0.001439
10	6	0	2.839552	-0.067542	-0.001570
11	6	0	4.055669	-0.126382	-0.006585
12	6	0	-4.055675	0.126240	0.006468
13	6	0	-5.479197	0.190207	0.018036
14	6	0	-6.143268	1.409240	-0.230838
15	6	0	-6.245396	-0.964943	0.278258
16	6	0	-7.534328	1.465901	-0.218769
17	6	0	-7.635930	-0.897237	0.288005
18	1	0	-5.739005	-1.904896	0.471526
19	6	0	-8.284922	0.315592	0.039992
20	1	0	-8.034550	2.410066	-0.411781
21	1	0	-8.215343	-1.793035	0.489903
22	6	0	5.479199	-0.190185	-0.018018
23	6	0	6.245290	0.965051	-0.278174
24	6	0	6.143386	-1.409141	0.230918
25	6	0	7.635833	0.897504	-0.287796
26	1	0	5.738810	1.904947	-0.471491
27	6	0	7.534454	-1.465645	0.218974
28	6	0	8.284940	-0.315251	-0.039721
29	1	0	8.215162	1.793366	-0.489646
30	1	0	8.034765	-2.409753	0.412033
31	8	0	1.403255	2.355110	-0.440285
32	8	0	-1.403262	-2.355276	0.440154
33	6	0	1.868731	3.035738	0.734190
34	6	0	-1.868745	-3.035897	-0.734322
35	1	0	2.569023	2.414052	1.302007
36	1	0	2.381512	3.933567	0.385534
37	1	0	1.029006	3.321446	1.378591
38	1	0	-2.569048	-2.414211	-1.302126
39	1	0	-1.029026	-3.321594	-1.378734
40	1	0	-2.381516	-3.933733	-0.385669
41	1	0	5.558514	-2.300783	0.431644
42	1	0	-5.558313	2.300815	-0.431615
43	1	0	9.369519	-0.363613	-0.048178
44	1	0	-9.369495	0.364077	0.048545

Table S8: Cartesian coordinates for optimized geometry of 2b

Standard orientation:							
Center Number	Atomic Number	Atomic Type	Coord X	inates (Ang Y	stroms) Z		
1	 6		0.881513	1.016970	0.399749		
2	6	0	-0.488253	1.248207	0.383275		
3	6	0	-1.395599	0.244255	-0.008751		

4	6	0	-0.881687	-1.016173	-0.401099
5	6	0	0.488075	-1.247440	-0.384568
6	6	0	1.395426	-0.243512	0.007536
7	1	0	-0.857990	2.219907	0.691122
8	1	0	0.857846	-2.219116	-0.692454
9	6	0	2.792632	-0.503920	0.026364
10	6	0	-2.792844	0.504462	-0.027282
11	6	0	-3.986912	0.737271	-0.029688
12	6	0	3.986649	-0.737008	0.029164
13	6	0	5.371344	-1.071049	0.046919
14	6	0	6.394923	-0.092353	-0.004202
15	6	0	5.745949	-2.427028	0.119977
16	6	0	7.734520	-0.476212	0.022293
17	6	0	7.087189	-2.798427	0.146223
18	1	0	4.966810	-3.180340	0.158610
19	6	0	8.085181	-1.824681	0.099232
20	1	0	8.504829	0.284276	-0.018796
21	1	0	7.351259	-3.849569	0.204390
22	1	0	9.131941	-2.109059	0.120196
23	6	0	-5.371687	1.070977	-0.047022
24	6	0	-5.746691	2.426812	-0.120644
25	6	0	-6.394969	0.092019	0.005044
26	6	0	-7.088046	2.797822	-0.146555
27	1	0	-4.967776	3.180319	-0.159995
28	6	0	-7.734684	0.475488	-0.021142
29	6	0	-8.085746	1.823821	-0.098657
30	1	0	-7.352434	3.848859	-0.205178
31	1	0	-8.504767	-0.285189	0.020668
32	1	0	-9.132594	2.107898	-0.119353
33	6	0	6.043385	1.368495	-0.112407
34	6	0	-6.042963	-1.368676	0.113851
35	9	0	7.140366	2.156790	-0.126895
36	9	0	5.355037	1.635697	-1.251349
37	9	0	5.270550	1.788838	0.915803
38	9	0	-5.270585	-1.789355	-0.914563
39	9	0	-5.353919	-1.635084	1.252553
40	9	0	-7.139725	-2.157263	0.129373
41	8	0	-1.724166	-2.000641	-0.854731
42	8	0	1.723842	2.001635	0.853193
43	6	0	-2.292617	-2.835127	0.167158
44	6	0	2.293594	2.834865	-0.169003
45	1	0	-2.908937	-2.253167	0.857772
46	1	0	-2.922946	-3.560508	-0.348539
47	1	0	-1.505911	-3.359085	0.722361
48	1	0	2.909805	2.251920	-0.858867
49	1	0	1.507608	3.359066	-0.725002
50	1	0	2.924246	3.560095	0.346506

 Table S9: Cartesian coordinates for optimized geometry of 2c

Standard orientation:

Center	Atomic	Atomic	Coordinates	(Angstroms)

Number	Number	Туре	Х	Y	Z
1	6	0	-0.840668	-1.101371	0.226871
2	6	0	0.539205	-1.260069	0.234947
3	6	0	1.410286	-0.174065	0.013660
4	6	0	0.840670	1.101353	-0.226843
5	6	0	-0.539203	1.260051	-0.234919
6	6	0	-1.410285	0.174047	-0.013632
7	1	0	0.946892	-2.247430	0.420962
8	1	0	-0.946890	2.247412	-0.420934
9	6	0	-2.816781	0.372749	-0.001592
10	6	0	2.816783	-0.372765	0.001619
11	6	0	4.019709	-0.562250	0.002545
12	6	0	-4.019706	0.562240	-0.002521
13	6	0	-5.420983	0.801683	-0.001852
14	6	0	-6.338829	-0.282816	0.029533
15	6	0	-5.925177	2.114858	-0.033817
16	6	0	-7.714165	-0.030737	0.032192
17	6	0	-7.295707	2.360107	-0.031876
18	1	0	-5.218461	2.937883	-0.058779
19	6	0	-8.184153	1.284795	0.002070
20	1	0	-8.422307	-0.849622	0.056683
21	1	0	-7.665775	3.379721	-0.055840
22	1	0	-9.255377	1.462214	0.004481
23	6	0	5,420988	-0.801680	0.001872
24	6	0	5,925195	-2.114849	0.033886
25	6	0	6.338823	0.282826	-0.029569
26	6	0	7.295727	-2.360085	0.031941
27	1	0	5.218487	-2.937880	0.058890
28	6	0	7.714161	0.030761	-0.032232
29	6	0	8,184162	-1.284766	-0.002061
30	1	0	7.665806	-3.379694	0.055943
31	- 1	0	8.422295	0.849651	-0.056765
32	- 1	0	9,255388	-1.462174	-0.004476
33	- 8	0	1.625965	2.193277	-0.512451
34	8	0	-1.625964	-2.193295	0.512478
35	6	0	2,294085	2.784714	0.612379
36	6	0	-2.294080	-2.784733	-0.612353
37	1	0	3.032496	2.102068	1.042526
38	- 1	0	2.803166	3.671143	0.229955
39	1	0	1.570865	3.083656	1.380149
40	- 1	0	-3.032489	-2.102088	-1.042504
41	- 1	0	-1.570858	-3.083678	-1.380119
42	- 1	0	-2.803163	-3.671161	-0.229929
43	- 8	0	5.785914	1.524243	-0.052548
44	8	0	-5.785933	-1.524239	0.052466
45	6	0	6,653543	2.655512	-0.091012
46	6	0	-6 653573	-2 655502	0.091012
47	1	0	6,001353	3,528678	-0.108021
4, 18	± 1	a	7 295207	2,698005	0 796319
4 0 Д9	- 1	a	7,277622	2.650204	-0.991736
 50	± 1	a	-7 295229	-2.697950	-0 796466
50 51	± 1	a	-6 001202	-3 528671	0 107257
52	± 1	a	-7 277661	-2 650225	0 991591
22	±	0	, • Z / / UU I		

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	0.691066	-1.206061	-0.188768	
2	6	0	-0.697548	-1.190011	-0.204570	
3	6	0	-1.416876	0.007586	-0.020655	
4	6	0	-0.691067	1.206004	0.188826	
5	6	0	0.697546	1.189954	0.204630	
6	6	0	1.416875	-0.007642	0.020712	
7	1	0	-1.229924	-2.120491	-0.366808	
8	1	0	1.229923	2.120434	0.366869	
9	6	0	2.837683	-0.003746	0.021355	
10	6	0	-2.837684	0.003695	-0.021302	
11	6	0	-4.054540	-0.022737	-0.025883	
12	6	0	4.054539	0.022695	0.025928	
13	6	0	5.477919	0.049766	0.024394	
14	6	0	6.171549	1.244760	0.306185	
15	6	0	6.215854	-1.118847	-0.255192	
16	6	0	7.560904	1.268248	0.305402	
17	6	0	7.605264	-1.090021	-0.255392	
18	1	0	5.689856	-2.042574	-0.469423	
19	6	0	8.280558	0.102137	0.025071	
20	1	0	8.087185	2.189483	0.529211	
21	1	0	8.165881	-1.993791	-0.466395	
22	6	0	-5.477920	-0.049794	-0.024378	
23	6	0	-6.215848	1.118877	0.254989	
24	6	0	-6.171559	-1.244827	-0.305978	
25	6	0	-7.605257	1.090069	0.255159	
26	1	0	-5.689842	2.042635	0.4690/2	
27	6	0	-7.560916	-1.268299	-0.305221	
28	6	0	-8.280560	-0.102131	-0.025112	
29	1	0	-8.16586/	1.993884	0.465988	
30 21	1	0	-8.08/203	-2.189500	-0.5288/9	
51 20	0 0	0	-1.351431	2.30/920	0.423035	
22	8 6	0	1.351427	-2.30/900	-0.425/79	
2/	0	0	-1.700032	2 001575	0.756996	
25	0	0	-2 467657	2 103311	-1 3/8573	
36	1	0	-2.40/05/	2.493341	-0 /13107	
30	1	0	-2.204280	3 35969/	-0.413107	
32	1	0	2 467706	-2 493371	1 3/8598	
30	1	0	0 902604	-3 359728	1 375844	
40	1	0	2 264312	-3 999554	0 413158	
40 41	1	0	-5,611552	-2.146846	-0.526593	
42	1	0	5.611535	2.146733	0.526969	
43	÷ 6	õ	-9.781695	-0.145718	0.032857	
44	6	0 0	9.781690	0.145780	-0.032919	
45	9	0	-10.295341	-1.064834	-0.816004	
46	9	0	-10.228561	-0.470222	1.271744	
47	9	0	-10.336981	1.047207	-0.278773	

Table S10: Cartesian coordinates for optimized geometry of 2d

48	9	0	10.295332	1.064531	0.816343
49	9	0	10.228516	0.470862	-1.271669
50	9	0	10.337018	-1.047267	0.278161

Standard orientation:

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number.	Number.	туре	Λ	Y	۷۲
1	6	0	0.663486	1.220105	0.184457
2	6	0	-0.724409	1.174803	0.184051
3	6	0	-1.420819	-0.037645	0.003967
4	6	0	-0.663484	-1.220064	-0.184443
5	6	0	0.724411	-1.174762	-0.184037
6	6	0	1.420821	0.037686	-0.003954
7	1	0	-1.276139	2.096856	0.329953
8	1	0	1.276141	-2.096816	-0.329940
9	6	0	2.841182	0.061304	0.013394
10	6	0	-2.841180	-0.061263	-0.013380
11	6	0	-4.059397	-0.055683	-0.022685
12	6	0	4.059399	0.055719	0.022698
13	6	0	5.482235	0.056266	0.038843
14	6	0	6.209370	-1.123743	-0.204327
15	6	0	6.203991	1.243561	0.299021
16	6	0	7.602200	-1.131221	-0.191363
17	6	0	7.588680	1.243008	0.313668
18	1	0	5.662092	2.163894	0.490191
19	6	0	8.301103	0.056268	0.068596
20	1	0	8.128304	-2.058126	-0.383433
21	1	0	8.146215	2.152076	0.513430
22	6	0	-5.482233	-0.056256	-0.038839
23	6	0	-6.203965	-1.243565	-0.299020
24	6	0	-6.209391	1.123740	0.204326
25	6	0	-7.588654	-1.243038	-0.313675
26	1	0	-5.662048	-2.163888	-0.490185
27	6	0	-7.602222	1.131191	0.191353
28	6	0	-8.301100	-0.056311	-0.068609
29	1	0	-8.146171	-2.152117	-0.513440
30	1	0	-8.128344	2.058087	0.383419
31	8	0	-1.290824	-2.423236	-0.415574
32	8	0	1.290826	2.423277	0.415587
33	6	0	-1.744298	-3.100977	0.764664
34	6	0	1.744298	3.101019	-0.764651
35	1	0	-2.480147	-2.500542	1.309889
36	1	0	-2.211614	-4.027356	0.426572
37	1	0	-0.903049	-3.337103	1.427117
38	1	0	2.480154	2.500589	-1.309871
39	1	0	0.903049	3.337135	-1.427108
40	1	0	2.211604	4.027403	-0.426560
41	1	0	-5.673326	2.045354	0.406231
42	1	0	5.673286	-2.045347	-0.406231

Table S11: Cartesian coordinates for optimized geometry of 2e

40	0	0		0 162656	0 105 00
43	8	0	-9.050580	-0.103030	-0.102008
44	8	0	9.656591	0.163588	0.105588
45	6	0	-10.437610	1.005219	0.135207
46	6	0	10.437592	-1.005300	-0.135239
47	1	0	-10.236219	1.781870	-0.611367
48	1	0	-11.478236	0.690071	0.056895
49	1	0	-10.254917	1.409052	1.137532
50	1	0	11.478224	-0.690170	-0.056936
51	1	0	10.236194	-1.781950	0.611335
52	1	0	10.254882	-1.409127	-1.137563

Table S12: Total energies for optimized derivatives 1

Compound	1a	1b	1c	1d	1e
Energy (Hartrees)	1520.47689	2194.53351	1794.46026	2194.53797	1749.46774

Table S13: Total energies for optimized derivatives 2

Compound	2a	2b	2c	2d	2e
Energy (Hartrees)	1075.39827	1749.45727	1304.38520	1749.46057	1304.38807

4. SEM Images

Figure S2: SEM images for supramolecular aggregates **1b**,**c** using the mixture of solvents a) **1b**, (THF/ethanol) and b) **1c**, (THF/methanol).

Figure S3: SEM images for supramolecular aggregates of 2a-e using the mixture of solvents a) 2a, (THF/methanol) b) 2b, (CHCl₃/ethanol), c) 2c, (THF/methanol), d) 2d (CHCl₃/ethanol) and e) 2e (THF/ethanol).

5. X-Ray diffraction studies

Figure S4: Ortep drawing of compounds a) 1a, b) 1c, c) 1e, d) 2a, e) 2b, f) 2d, y g) 2e. Ellipsoids are given at the 30 % probability level.

Figure S5: X-Ray structure of compounds 1a, 1c and 1e

Figure S6: X-Ray structure of compounds 2a, 2b, 2d and 2e

	1a	1c	1e
Empirical formula	$C_{24} H_{12} F_6$	$C_{26} H_{16} F_6 O_2$	$C_{26} H_{16} F_6 O_2$
Formula weight	414.34	474.39	474.39
Temperature (K)	290(2)	290(2)	290(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C 2/c	P 2 ₁ /n	C 2/c
a(Å)	23.127(13)	8.656(6)	50.82(4)
b(Å)	4.957(3)	11.264(8)	11.076(9)
c(Å)	18.228(10)	11.003(8)	8.019(7)
α(°)	90	90	90
β(°)	115.632(7)	96.45(3)	92.988(14)
γ(°)	90	90	90
Volume(Å ³)	1884.0(19)	1066.1(13)	4508(7)
Z	4	2	8
Density (calculated) (g/cm ³)	1.461	1.478	1.398
Absorption coefficient (mm ⁻¹)	0.126	0.128	0.121
F(000)	840	484	1936
Crystal size (mm ³)	0.36 x 0.09 x 0.03	0.17 x 0.09 x 0.03	0.25 x 0.09 x 0.07
	$-27 \le h \le 28$	$-10 \le h \le 10$	$-63 \le h \le 62$
Index ranges	$-6 \le k \le 6$	$-13 \le k \le 13$	$-13 \le k \le 13$
	$-21 \le l \le 22$	$-13 \le l \le 12$	$-10 \le l \le 9$
Reflections collected	6273	5990	12348
Independent reflections	1903	1863	4558
independent reflections	[R(int) = 0.0581]	[R(int) = 0.0915]	[R(int) = 0.0856]
Data / restraints / parameters	1903 / 0 / 137	1863 / 0 / 156	4558 / 0 / 310
Goodness-of-fit on F ²	0.999	0.971	0.999
Final D indiana [1>2-1)]	R1 = 0.0498	R1 = 0.0808	R1 = 0.0687
1 mar K mulces $\left[1 > 2 O(1)\right]$	wR2 = 0.1015	wR2 = 0.1923	wR2 = 0.1451
Extinction coefficient	0.0037(8)	0.083(13)	0.0012(2)
Largest diff. peak / hole, e.Å ⁻³	0.173 and -0.219	0.291 and -0.332	0.336 and -0.311

Table S14.Crystal data and structure refinement for 1a, 1c and 1e.

	2a	2b	2d	2e
Empirical formula	$C_{24}H_{18}O_2$	$C_{26}H_{16}F_6O_2$	C ₂₆ H ₁₆ F ₆ O ₂	C ₂₆ H ₂₀ O ₄
Formula weight	338.38	474.39	474.39	396.42
Temperature (K)	290(2)	290(2)	290(2)	290(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	C 2/c	C 2/c	$P 2_1/c$	P ī
a(Å)	15.569(5)	23.880(19)	11.1094(18)	8.14(8)
b(Å)	11.084(3)	10.813(8)	13.026(2)	8.41(9)
c(Å)	10.773(3)	8.582(7)	7.5574(12)	9.10(9)
α(°)	90	90	90	64.74(9)
β(°)	101.868(4)	100.551(8)	97.468(2)	89.93(11)
γ(°)	90	90	90	66.50(10)
Volume(Å ³)	1819.5(10)	2178(3)	1084.4(3)	506(9)
Z	4	4	2	1
Density (calc) (g/cm ³)	1.235	1.446	1.453	1.301
Absorp. Coeff. (mm ⁻¹)	0.077	0.125	0.126	0.087
F(000)	712	968	484	208
Crystal size (mm ³)	0.34x0.25x0.21	0.40x0.32x0.31	0.36x0.28x0.22	0.36x0.28x0.22
	$-15 \le h \le 19$	$-28 \le h \le 28$	$-12 \le h \le 13$	$-9 \le h \le 9$
Index ranges	$-13 \le k \le 13$	$-12 \le k \le 11$	$-13 \le k \le 15$	$-9 \le k \le 9$
	$-13 \le l \le 13$	$-10 \le l \le 10$	$-8 \le l \le 8$	$-10 \le l \le 10$
Reflections collected	6625	6198	6176	2921
Independent reflections	1854	1904	1880	1705
	[R(int)=0.0225]	[R(int)=0.0425]	[R(int)=0.0940]	[R(int)=0.3633]
Data/restraints/parameters	1854/0/119	1904 / 0 / 156	1880/12/180	1705/117/158
Goodness-of-fit on F ²	1.050	1.119	1.087	0.653
Final R indices [1> 2-1)]	R1 = 0.0455	R1 = 0.0965	R1 = 0.0688	R1 = 0.0732
$\frac{1}{1} \max \left[1 - 20(1) \right]$	wR2 = 0.1123	wR2 = 0.2323	wR2 = 0.1568	wR2 = 0.0892
Larg. diff.peak/hole,e.Å ⁻³	0.126 / -0.167	0.531 / -0.278	0.271 / -0.315	0.176 / -0.211

Table S15: Crystal data and structure refinement for 2a, 2b, 2d and 2e.

b)

b

Figure S7: a) View down b axis of channels in the packing of compound 1a. Representatives channels A and B are marked in red and blue circles, respectively. The longest axis of the unit cell is a axis. b) View down c axis of channels in the packing of compound 1e. Representatives channels A, B and C are marked in red, blue and pink circles, respectively. The longest axis of the unit cell is a axis. c) View down b axis of channels in packing of compound 2b. Representatives channels are marked in red. The longest axis of the unit cell is a axis.

а

b)

a)

c)

d)

Figure S8. Packings without internal channels of a) 1c. View down a and c axis. The longest axis of the unit cell is the b axis. b) 2a. View down b and c axis. The longest axis of the unit cell is the a axis. c) 2d. View down a and c axis. The longest axis of the unit cell is the b axis. d) 2e. View down a and b axis. The longest axis of the unit cell is the c axis. The longest axis of the unit cell is the c axis. The longest axis of the unit cell is the c axis.

Channel	Distance (Å)		Size (Å)				
Compound 1a							
Α	F1···H4	2.70	Plane(F1-H4)-plane(F1-H4)	4.64			
	F3…H3	2.77	Plane(F3-H4)-plane(F3-H4)	3.73			
В	F2···H4	2.82	Plane(F2-H4)-plane(F2-H4)	3.96			
	F2…H5	3.33	Plane(H4-H5)-plane(H4-H5)	2.50			
		С	ompound le				
Α	F3…H20B	2.67	Plane H20B-plane H20B	4.48			
			Plane F3-plane F3	3.38			
В	01…H25	2.53	Plane(O1-H25)-Plane (O1-H25)	3.29			
	F4…H25	2.35	Plane (H2)-Plane(F4)	3.74			
С	F6···H7C	2.62	Plane (H16)-Plane(F5)	3.61			
	C21H7A	2.81	Plane(C21-C22)-Plane(C21-C22)	3.70			
Compound 2b							
	F3…H13C	3.54	Plane(F1-H13C)-plane (F1-H13C)	3.00			
	F1···H13C	2.67	Plane (F1-F3)-Plane(F1-F3)	3.66			

Table S16: Intermolecular contacts and channel size of compounds 1a, 1e y 2b.

Figure S9: Packing molecular of compound **I** with the internal channels view down *b* axis a) with the atoms in their Van der Waals radii and b) with the atoms in wireframe style. The channels are marked in colour red. The longest axis of the unit cell is the *a* axis. Reference 49 in the manuscript. CCDC: DEBJED

Figure S10: Packing molecular of compound II with the internal channels view down a axis a) with the atoms in their Van der Waals radii and b) with the atoms in wireframe style. The channels are marked in colour red. The longest axis of the unit cell is the c axis. Reference 43 in the manuscript. CCDC: XOWDIY

Figure S11: Packing molecular of compound III with the internal channels view down b axis a) with the atoms in their Van der Waals radii and b) with the atoms in wireframe

style. The channels are marked in colour red. The longest axis of the unit cell is the *a* axis. Reference 44 in the manuscript. CCDC: DEBMAC

Figure S12: Packing molecular of compound IV with the internal channels view down a

axis a) with the atoms in their Van der Waals radii and b) with the atoms in wireframe style. The channels are marked red and blue. The longest axis of the unit cell is the *b* axis. Reference 49 in the manuscript. CCDC: DAZXUB

Figure S13: Packing molecular of compound V without internal channels view down a and c axis. The longest axis of the unit cell is the b axis. Reference 61 in the manuscript.

6. NMR spectra

Figure S14: ¹H NMR spectrum of compound 5 in CDCl₃.

Figure S15: ¹³C NMR spectrum of compound 5 in CDCl₃.

Figure S16: ¹H NMR spectrum of compound 4b in CDCl₃.

Figure S17: ¹H NMR spectrum of compound 4c in CDCl₃.

Figure S18: ¹H NMR spectrum of compound 4d in CDCl₃.

Figure S19: ¹H NMR spectrum of compound 4e in CDCl₃.

Figure S20: ¹H NMR spectrum of compound 1a in CDCl₃.

Figure S21: ¹³C NMR spectrum of compound 1a in CDCl₃.

Figure S22: ¹H NMR spectrum of compound 1b in CDCl₃.

Figure S23: ¹³C NMR spectrum of compound 1b in CDCl₃.

Figure S24: ¹H NMR spectrum of compound 1c in CDCl₃.

Figure S25: ¹³C NMR spectrum of compound 1c in CDCl₃.

Figure S26: ¹H NMR spectrum of compound 1d in CDCl₃.

Figure S27: ¹³C NMR spectrum of compound 1d in CDCl₃.

Figure S28: ¹H NMR spectrum of compound 1e in CDCl₃.

Figure S29: ¹³C NMR spectrum of compound 1e in CDCl₃.

Figure S30: ¹H NMR spectrum of compound 2a in CDCl₃.

Figure S31: ¹³C NMR spectrum of compound 2a in CDCl₃.

Figure S32: ¹H NMR spectrum of compound 2b in CDCl₃.

Figure S33: ¹³C NMR spectrum of compound 2b in CDCl₃.

Figure S34: ¹H NMR spectrum of compound 2c in CDCl₃.

Figure S35: ¹³C NMR spectrum of compound 2c in CDCl₃.

Figure S36: ¹H NMR spectrum of compound 2d in CDCl₃.

Figure S37: ¹³C NMR spectrum of compound 2d in CDCl₃.

Figure S38: ¹H NMR spectrum of compound 2e in CDCl₃.

Figure S39: ¹³C NMR spectrum of compound 2e in CDCl₃.

7. References

- (1) SAINT v8.37, Bruker-AXS (2016), APEX3 v2016.1.0. Madison, Wisconsin, USA.
- (2) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke. J. Appl. Cryst. 2015, 48, 3-10.
- (3) L. J. Farrugia. J. Appl. Cryst. 2012, 45, 849-854
- (4) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann. J. *Appl. Cryst.*, 2009, **42**, 339-341.
- (5) G. M. Sheldrick. SHELX-2014, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, **2014**.
- (6) T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Greneche. *J. Am. Chem. Soc.*, 2010, **132**, 1127-1136.
- (7) S. S. Zhu, T. M. Swager. J. Am. Chem. Soc., 1997, 119, 12568-12577.
- (8) M. J. Frisch et al., *Gaussian16, Revis. A.03, Gaussian Inc., Wallingford CT (full Ref. Support. Information).*
- (9) R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford, New York, 1989
- (10) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5650
- (11) J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3093