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1 Two-photon probe in an excited state dimer

To derive an exemplary understanding of two-photon absorption in interacting molecules, we will 
consider two interacting molecules and describe their excited states in the framework of exciton 
theory, a so-called excited state dimer.1 Two molecules, “1” and “2”, each with two active orbitals, 
form an orthonormal set of four orbitals: initial (i) and final (f) on fragment 1 and initial (i') and final (f’) 
on fragment 2.2 The initial orbitals are doubly occupied in the ground state and the final orbitals are 
unoccupied. Considering these orbitals it is possible to construct four states by single excitations from 
the ground state: , ,  and . | �1 ∗ 2⟩� | �12 ∗ ⟩� | �1 ‒ 2 + ⟩� | �1 + 2 ‒ ⟩�
In the presence of symmetry, these states are pairwise degenerate, yielding delocalized 
eigenfunctions. At long intermolecular separations, the wave functions exist in degenerate pairs and 
can be divided into two types: 

| �𝜎⟩� =  
1
2

(| �1 ∗ 2⟩� ‒ | �12 ∗ ⟩�)

| �𝛾⟩� =  
1
2

(| �1 ∗ 2⟩� + | �12 ∗ ⟩�)

| �𝛿⟩� =  
1
2

(| �1 ‒ 2 + ⟩� + | �1 + 2 ‒ ⟩�)

| �𝜌⟩� =  
1
2

(| �1 ‒ 2 + ⟩� ‒ | �1 + 2 ‒ ⟩�)
(1)

Where  and  describe Frenkel excitonic resonance states, while  and  are charge-transfer or | �𝜎⟩� | �𝛾⟩� | �𝛿⟩� | �𝜌⟩�
charge-resonance states. The states here are given in the localized basis set. In the following we will 
only consider Frenkel exciton states  and . The energy expression of the latter can be derived by | �𝜎⟩� | �𝛾⟩�
diagonalization of the Frenkel exciton Hamiltonian:3 

𝐻̂ =  (𝐸̃𝜎 𝐽
𝐽 𝐸̃𝛾) (2)

The coupling  between the transition dipole moments  of the two molecules “1” and “2” 𝐽 = 𝑉(𝜇1,𝜇2) 𝜇
determines the off-diagonal elements of the Hamiltonian, whereas the diagonal elements here are the 
excited state energies of  and  with contributions from interactions of static dipoles (e.g. in the | �𝜎⟩� | �𝛾⟩�

case of a dimer of asymmetric monomers): .4𝐸̃𝑖 =  𝐸𝑖 + 𝛿𝐸𝑖

The interaction energy  between transition dipoles at positions and  can be approximated 𝑉(𝜇1,𝜇2) 𝑅1 𝑅2

using e.g. classical dipole-dipole interaction:5 

𝑉(𝜇1,𝜇2) =  
1
𝜀[𝜇1 ∙ 𝜇2

|𝑅12|3
‒

3(𝜇1 ∙ 𝑅12)(𝜇2 ∙ 𝑅12)

|𝑅12|5 ] 
(3)



If the two molecules are of the same species,  applies. We confine ourselves to the case, where 𝐸̃𝜎 =  𝐸̃𝛾

the diagonal energies are similar, . We further approximate  by the monomer excitation 𝐸̃𝜎 =  𝐸̃𝛾 = 𝐸 𝐸

energy, . In this case the energies of the excitonic eigenstates  and  are . If the two 𝐸𝑀 | �𝜎⟩� | �𝛾⟩� 𝐸𝑀 ± 𝐽

molecules are parallel aligned or in a face-to-tail arrangement with respect to each other, then only 
one of the two states is dipole allowed and the other is dipole forbidden (J -or H-type aggregation).6 If 
the two transition dipole moments are neither parallel nor antiparallel to each other, the two excitonic 
eigenstates have finite transition dipole moments in different directions. In this case, the linear one-
photon absorption spectrum of the dimer consists of two peaks with different polarization 
dependencies, the Davydov splitting.4 
In further following our assumptions, we define the total dipole moment operator of interacting 
molecules as a sum of the dipole moment operators of the separate molecules,  and define 𝜇̂ =  𝜇̂1 + 𝜇̂2

the static dipole moment of the molecules in their ground and excited state as:7 

⟨𝑖│𝜇̂𝑖│𝑖⟩ = 𝑀𝑔,𝑖

⟨𝑖 ∗ │𝜇̂𝑖│𝑖 ∗ ⟩ = 𝑀𝑒𝑥,𝑖

𝑖 = 1,2 (4)

Similarly, transition dipole operator matrix elements can be defined as:

⟨𝑖│𝜇̂𝑖│𝑖 ∗ ⟩ =  ⟨𝑖 ∗ │𝜇̂𝑖│𝑖⟩ =  𝜇𝑖

𝑖 = 1,2 (5)

Equations (4) and (5) allow to evaluate the dipole moment operator matrix elements. Note that the 
ground state wavefunction has the form :𝐺 = | �12⟩�

⟨𝐺│𝜇̂│𝐺⟩ =  𝑀𝑔,1 +  𝑀𝑔,2

⟨𝜎│𝜇̂│𝜎⟩ =  ⟨𝛾│𝜇̂│𝛾⟩ =  
1
2

( 𝑀𝑒𝑥,1 +  𝑀𝑒𝑥,2 +  𝑀𝑔,1 +  𝑀𝑔,2)  

⟨𝜎│𝜇̂│𝛾⟩ =  ⟨𝛾│𝜇̂│𝜎⟩ =  
1
2

( ‒ 𝑀𝑒𝑥,1 +  𝑀𝑒𝑥,2 +  𝑀𝑔,1 ‒  𝑀𝑔,2)  

⟨𝜎│𝜇̂│𝐺⟩ =  ⟨𝛾│𝜇̂│𝐺⟩ =  
1
2

(𝜇1 ±  𝜇2)

(6)
 

Up to this point we have introduced all quantities needed to describe the two-photon probability of 
the excited dimer within a sum-over-state formalism (SOS).8 The latter is commonly been described by 
the following equations: 



〈𝛿𝑇𝑃𝐴〉 =  
1

15∑
𝑎𝑏

(2𝑆𝑎𝑏𝑆̅𝑎𝑏 + 𝑆𝑎𝑎𝑆̅𝑏𝑏) 

𝑆𝑖𝑓
𝑎𝑏(𝜔1,𝜔2) =  

1
ℏ∑

𝑛 ≠ 𝑖
{⟨𝑖│𝜇𝑎│𝑛⟩ ‒ ⟨𝑛│𝜇̅𝑏│𝑓⟩

𝜔𝑛𝑖 ‒ 𝜔1
+

⟨𝑖│𝜇𝑏│𝑛⟩ ‒ ⟨𝑛│𝜇̅𝑎│𝑓⟩
𝜔𝑛𝑖 ‒ 𝜔2 } (7)

With  as two-photon absorption strength,  as the two-photon absorption tensor elements,  the 𝛿𝑇𝑃𝐴 𝑆𝑎𝑏 𝑖

ground state,  the intermediate state and  the final state.  is the energy difference between the 𝑛 𝑓 𝜔𝑛𝑖

ground and intermediate states and , respectively   are the both incoming photons. For our model 𝜔1 𝜔2

system, two states in the case of resonance to the low-lying exciton states, as well as three states in 
the case of resonance to the high-lying exciton state needs to be included in the SOS equation (7), 
which leads to so-called few-state models.9

〈𝜎2〉 ∝  
𝜇 2

𝑖𝑓∆𝑀 2
𝑖𝑓

(𝐸𝑖𝑓

2 )2Γ
(8)

With equation (8) for a two-state system and equation (9) in case of a three-state system.
 

〈𝜎2〉 ∝  
𝜇 2

𝑖𝑛𝜇 2
𝑛𝑓

(𝐸𝑖𝑛 ‒
𝐸𝑖𝑓

2 )2Γ
(9)

 is a damping factor,  and  are the transition dipole moments between initial and intermediate, Γ 𝜇𝑖𝑛 𝜇𝑖𝑓

respectively initial and final state. The  are the excited state energies and  is the difference of 𝐸’𝑠 ∆𝑀𝑖𝑓

the static dipole moments of the initial and excited states. 

In the following we will consider two-photon absorption in a perfectly aligned J-type aggregate (face-
to-tail orientation of the dipole moments) and will parametrize equation (8) and (9) by the derived 
quantities for the excited state dimer above. In the case of a J-type alignment, the optical properties 
of the  state is similar to the monomer, however, holds all oscillator strength and the transition | �𝜎⟩� | �𝜎⟩ �
dipole moment scales by a factor of . The linear absorption spectrum shows a single, red-shifted 2
band compared to the monomer species, where the strength of the red-shift is dependent of the 
coupling strength.10 To explain the attendance of two-photon absorption in the coupled dimer, the 
systems needs to be made centrosymmetric by vanishing values of static dipole moments in the ground 
and excited state.7 In the case of a centrosymmetric J-type aggregate the low-lying  state will hold  | �𝜎⟩�
ungerade symmetry and therefore is two-photon forbidden, however, the high-lying  state will hold | �𝛾⟩�
gerade symmetry and thus is two-photon allowed. In assuming inversion symmetry, equations (6) 
reduce to:

⟨𝐺│𝜇̂│𝐺⟩ =  0
(10)



⟨𝜎│𝜇̂│𝜎⟩ =  ⟨𝛾│𝜇̂│𝛾⟩ =  0  

⟨𝜎│𝜇̂│𝛾⟩ =  ⟨𝛾│𝜇̂│𝜎⟩ =  ( 𝑀𝑒𝑥,1 ‒  𝑀𝑔,1) =  Δ𝑀 𝑀
𝑒𝑥,𝑔   

⟨𝜎│𝜇̂│𝐺⟩ =  ⟨𝛾│𝜇̂│𝐺⟩ =  2𝜇𝑀

Inserting above quantities together with the derived energies into equation (9) gives an expression for 
the two-photon absorption strength into the high-lying state  of the excited doublet:| �𝛾⟩�

〈𝜎2〉 ∝  
𝜇 2

𝑀∆𝑀 𝑀
𝑒𝑥,𝑔

2

2(𝐸𝑀 ‒ 3𝐽)2Γ (11)

One immediately recognizes that the two-photon transition probability can be enhanced by molecular 
factors of the monomer (the transition dipole moment and the difference of excited state and ground 
state dipole moments) as well as factors concerning the intermolecular interactions between the single 
monomers (addressing the coupling constant ). The two-photon absorption spectrum will show a 𝐽
single peak, blue-shifted with respect to the one-photon monomer absorption spectrum (depending 
also on the coupling strength). 

Finally, a comparison of equation (11) with the equation of the two-photon absorption strength for 
the monomer species (equation (8) parametrized by monomer quantities) provides a first insight into 
the enhancement of the two-photon activity as a function of coupling strength. 

〈𝜎2〉𝐷𝑖𝑚𝑒𝑟

〈𝜎2〉𝑀𝑜𝑛𝑜𝑚𝑒𝑟
= 𝜉 =  

𝜇 2
𝑀∆𝑀 𝑀

𝑒𝑥,𝑔
2

2(𝐸𝑀 ‒ 3𝐽)2Γ
 ×  

(𝐸𝑀

2 )2Γ

𝜇 2
𝑀∆𝑀 𝑀

𝑒𝑥,𝑔
2
 

𝜉 =  
1
2( 𝐸𝑀

𝐸𝑀 ‒ 3𝐽)2

(12)

One finds that the ratio between the respective two-photon absorption strengths are exclusively 
dependent on the monomer excitation energy and the excitonic coupling strengths. The latter, 
however, is a function of the molecular alignment of the monomer species and can be tuned by 
geometrical parameters (cf. equation 3, the distance and the mutual positions of transition dipoles). 
This fact suggests the two-photon response to be controllable by structural aspects in molecular 
functional materials, such as metal-organic frameworks. Figure S1 shows the -term as a function of 𝜉
the coupling constant . The enhanced two-photon absorptivity of the excited state doublet with 𝐽
regard to the monomer species can be understood via reducing the energy of the  state, | �𝜎⟩ �
approaching a double resonance situation. 



Figure S1. -term as a function of the excitonic coupling constant. The plot reveals an enhanced TPA 𝜉
response of a coupled excited state dimer with respect to the monomer species by increasing the 
coupling constant. We used a  of 3.0 eV.𝐸𝑀

2 Two-photon probe in an excitonically coupled manifold – the 
case of one-exciton states and size enhancement

In this section we discuss two-photon absorption into the first exciton manifold of a periodic molecular 
aggregate of N molecules. The Hamiltonian of singly excited states takes the form:11 

𝐻̂ = ∑
𝑛

𝜔̃𝑛𝐵 †
𝑛 𝐵𝑛 +  ∑

𝑚,𝑛(𝑚 ≠ 𝑛)

𝐽𝑛𝑚 𝐵 †
𝑚𝐵𝑛

(13)

With  as the diagonal elements of the Frenkel Hamiltonian matrix and the  coupling of transition 𝜔̃𝑛 𝐽𝑛𝑚

dipole moments of neighbored molecules.  are creation and annihilation operators, respectively. 𝐵 +
𝑛 𝐵𝑛

In treating a linear aggregate, we will apply periodic boundary conditions, neglecting effects of chain 
ends. For a chain of N coupled monomers, the wave function e.g. takes the form:



| �𝑘𝑚⟩ =  � 2
𝑁 + 1

 ∑
𝑚

| �𝑚⟩𝑠𝑖𝑛( 𝜋𝑘𝑛
𝑁 + 1) � 

(14)

The corresponding matrix is diagonal, and its eigenvalues can be obtained by diagonalization, giving 
access to the eigenenergies and the eigenvectors. Following similar arguments as introduced in the 
case of a two-state system above, the dipole moments of the dipole operator for excitation from the 
ground state to the lowest state of the 1st exciton manifold ( ), as the excited-to-excited state ⟨𝑘0│𝜇̂│𝐺⟩
transitions between the lowest and highest state of the 1st exciton manifold ( ) of a linear ⟨𝑘𝑚│𝜇̂│𝑘0⟩
aggregate can be written as follows.4

⟨𝑘0│𝜇̂│𝐺⟩ ∝  𝑁𝜇𝑀

⟨𝑘𝑚│𝜇̂│𝑘0⟩ ∝  ∆𝑀 𝑀
𝑒𝑥,𝑔 (15)

Equation 15 provides a preliminary understanding of the size scaling of two-photon absorption in a 
linear aggregate, meaning the influence of the number of coupled chromophores on the TPA response. 
Considering equation 9 and equations 15, one finds that the TPA strength scales linear with the number 

of coupled dimers, namely . Considering transitions from the ground state to the 〈𝜎𝑇𝑃𝐴〉 ∝ 𝑁𝜇 2
𝑀∆𝑀 𝑀

𝑒𝑥,𝑔
2

various  states, states with an even quantum number ( ) hold oscillator strength, whereas 𝑘𝑚 𝑘0, 𝑘2, 𝑘4…

states with an odd quantum number ( ) are principally two-photon allowed. 𝑘1, 𝑘3, 𝑘5…

3 Two-photon probe in an excitonically coupled manifold – the 
case of two-exciton states and size-enhancement

As has been introduced above, the Frenkel exciton Hamiltonian (equation 13), describes aggregate 
eigenstates, which split into different sets of linear combinations of single-molecule excitations, the 
so-called N-exciton bands.11 Where in the preceding section, two-photon absorption into the lowest 
energy band, the one-exciton band of a linear aggregate was described, we here will focus on TPA into 
the two-exciton band. In the latter,  molecules on the aggregate chain share two single-molecule 𝑁
excitations. The two-exciton band is centered at twice the single-molecule transition frequency and 
has a width of eight times the interaction energy J. Two-exciton bands can exclusively been probed by 
nonlinear optical absorption, as optical transitions can only occur between adjacent exciton bands. 
The states of the two-exciton band are characterized by two quantum numbers,  and . The 𝑘1 𝑘2

eigenfrequencies are associated with both quantum numbers and are the sum of two independent 
one-exciton eigenfrequencies. Note that the wavefunctions of the two-exciton band are not the 
product of two independent one-exciton wavefunctions, a direct consequence of the Pauli exclusion 
principle. Table S1 summarizes analytical expressions for the eigenfrequencies and the transition 
dipole moments of one- and two-exciton bands of a linear molecular aggregate. 
When two-photon resonance approaches twice the exciton resonance, TPA into the two-exciton 
manifold scales with a  prefactor, which can be easily seen from the expressions of the transition 𝑁2

dipole moments of the one- and two-exciton bands and equation 9 (transition from the ground state 



to the one-exciton band scales with ,  plus the transition from the one- to the two-exciton band). µ𝑀 𝑁

A more comprehensive analysis of the underlying physics can be found elsewhere.12, 13 

In summary the above presented analysis attest to a number of preliminary statements. First, size-
dependencies of multi-photon absorption processes in molecular aggregates are a direct consequence 
of correlated molecular polarizations (enhanced transition dipole moments) and resonance effects, 
which will retain its validity as long as the aggregate is small compared to the optical wavelength and  

, with  is the order of the MPA process.12 Second, two-photon absorption processes into the 𝑁 ≫ 𝑛 𝑛
two lowest exciton bands of molecular aggregates show a scaling with the number of coupled 
chromophores, which is predicted to be linear in  (in the case of the 1st exciton manifold), respectively 𝑁

 (in the case of the two-exciton band) to a first order. Third, the strength of excitonic coupling 𝑁2

determines the energy levels of the system and so the resonance situation. Consequently, enhanced 
coupling strength reduce the detuning factor, while simultaneously strengthen the two-photon 
absorptivity (cf. Figure S1 and equation 12).

Table S1. Analytical expressions for the eigenfrequencies and the transition dipole moments of the one and 
two-exciton bands of a linear molecular aggregate.

One-exciton band
Eigenfrequencies Ω𝑘 = 𝜔𝑛 + 2𝑉𝑐𝑜𝑠( 𝜋𝑘

𝑁 + 1)
Transition dipole 
momenta

µ𝑖𝑘 =  µ𝑀 
2

𝑁 + 1
1 ‒ ( ‒ 1)𝑘

2
𝑐𝑜𝑡[ 𝜋𝑘

2(𝑁 + 1)]
Two-exciton band
Eigenfrequencies Ω 𝐿

𝑘1𝑘2
=  Ω𝑘1

+  Ω𝑘2

Transition dipole 
momentb

µ𝑘1𝑘2,𝑘

=  µ𝑀
2

𝑁 + 1(𝛿𝑘2,𝑘
1 ‒ ( ‒ 1)

𝑘1

2
𝑐𝑜𝑡[ 𝜋𝑘1

2(𝑁 + 1)] ‒ 𝛿𝑘1,𝑘
1 ‒ ( ‒ 1)

𝑘2

2
𝑐𝑜𝑡[ 𝜋𝑘2

2(𝑁 + 1)]) +  1 2(𝛿𝑘1 ‒ 𝑘2 ‒ 𝑘,0 ‒ 𝛿𝑘1 ‒ 𝑘2 + 𝑘,0) ×

{𝑐𝑜𝑡[ 𝜋𝑘1

2(𝑁 + 1)] + 𝑐𝑜𝑡[ 𝜋𝑘2

2(𝑁 + 1)]} + 1 2(𝛿𝑘1 + 𝑘2 + 𝑘,2(𝑁 + 1) ‒ 𝛿𝑘1 + 𝑘2 ‒ 𝑘,0)

{𝑐𝑜𝑡[ 𝜋𝑘1

2(𝑁 + 1)] ‒ 𝑐𝑜𝑡[ 𝜋𝑘2

2(𝑁 + 1)]} 

aNote that the transition dipole moment from the ground to the one-exciton band roughly scales as . The k=1 state µ𝑀 𝑁

holds the most oscillator strength with 0.81(𝑁 + 1)µ𝑚𝑜𝑛
2

bThe dominant transition from the one-exciton to the two-exciton band is the k=1, k1=2, k2=1 transition, which holds the 

highest oscillator strength with 1.27(𝑁 + 1)µ𝑀
2
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