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General information

All oxygen- and moisture-sensitive manipulations were carried out under an inert
atmosphere. All the chemicals were purchased from commercial sources and used as
received unless stated otherwise. Toluene was refluxed over Na and distilled under dry
argon. Synthesized compounds were subject to purification by temperature gradient
sublimation in high vacuum before used in subsequent studies. The 'H and 3C NMR
spectra were recorded on a Bruker Ascend spectrometer using CDCl; as solvent and
tetramethylsilane (TMS) as an internal reference. Mass analyses were recorded by
Bruker autoflex MALDI-TOF mass spectrometer. UV-Vis absorption spectra were
recorded on a Shimadzu UV-2700 recording spectrophotometer. Photoluminescence
(PL) spectra were recorded on a Hitachi F-4600 fluorescence spectrophotometer.
Phosphorescence spectra of thin films were conducted at 77 K. Thermogravimetric
analysis (TGA) was recorded on a TA Q50 instrument under nitrogen atmosphere at a
heating rate of 10 °C/min from 25 to 800 °C. The temperature of degradation (T,) was
correlated to a 5% weight loss. Differential scanning calorimetry were carried out on a
TA Q200. The glass transition temperature (T,) was determined from the second
heating scan at a heating rate of 10 °C min'! from 25 to 400 °C. Cyclic voltammetry
(CV) was carried out in nitrogen-purged tetrahydrofuran or acetonitrile (reduction scan)
or dichloromethane (oxidation scan) at room temperature with a CHI voltammetric
analyzer. Tetrabutylammonium hexafluorophosphate (0.1 M) was used as the
supporting electrolyte. The conventional three-electrode configuration consisted of a
platinum working electrode, a platinum wire auxiliary electrode and an Ag wire pseudo-
reference electrode with ferrocenium/ferrocene (Fc*/Fc¢) as the internal standard. Cyclic
voltammograms were obtained at scan rate of 100 mV/s. Formal potentials were
calculated as the average of cyclic voltammetric anodic and cathodic peaks. The
HOMO energy levels of the compounds were calculated according to the formula: -[4.8
+ (E1200x/red) - E1/2Fe/ret))] €V. The onset potential was determined from the intersection
of two tangents drawn at the rising and background current of the cyclic
voltammogram. The PL lifetimes were measured by a single photon counting

spectrometer from Edinburgh Instruments (FLS920) with a Picosecond Pulsed UV-



LASTER (LASTER377) as the excitation source. The solid state absolute PLQY's were
measured on a Hamamatsu UV-NIR absolute PL quantum yield spectrometer (C13534,
Hamamatsu Photonics) equipped with a calibrated integrating sphere in the host of
DPEPO (10 wt%) under excitation of 300 nm. During the PLQY measurements, the
integrating sphere was purged with pure and dry argon to maintain an inert
environment. The ground state molecular structures were optimized at the B3LYP-
D3/6-31g** level of theory; the S; and T, geometries were optimized via time-
dependent DFT (TDDFT) at PBE0/def2-SVP level of theory. In addition, the overlaps
between the hole and electron density distributions in the S; and T, states were

estimated by the Multiwfn code.!!]

Device Fabrication

Glass substrates pre-coated with a 95-nm-thin layer of indium tin oxide (ITO) with a
sheet resistance of 20 Q per square were thoroughly cleaned for 10 minutes in ultrasonic
bath of acetone, isopropyl alcohol, detergent, deionized water, and isopropyl alcohol.
Then, the substrates were totally dried in a 75 °C oven. After that, in order to improving
the hole injection ability of ITO, the substrates were treated by O, plasma for 10
minutes. Multilayer OLEDs were fabricated by the vacuum-deposition method.
Organic layers were deposited by high-vacuum (~5 x 104 Pa) thermal evaporation onto
a glass substrate pre-coated with an ITO layer. All organic layers were deposited
sequentially. The thermal deposition rates for the organic materials, LiF and Al were
1.0~1.5, 0.1 and 3~5 A s7!, respectively. The active area of each device was 9 mm?2.
The electroluminescence spectra, the current density-voltage characteristics and the
current density-voltage-luminance curves characterizations of the OLEDs were carried
out with a Photo Research SpectraScan PR-745 Spectroradiometer and a Keithley 2450
Source Meter and they are recorded simultaneously. All measurements were done at

room temperature under ambient conditions.

Synthesis

m-dibromobenzene, 1-bromo-4-iodobenzene, 3,6-di-tert-butylcarbazole, cesium



carbonate, cuprous iodide, palladium (0) tetrakis(triphenylphosphine), potassium
carbonate, 1,10-anhydrous phenanthroline, were used as received. 9-(4-bromophenyl)-
3,6-di-tert-butyl-9H-carbazole and 9-(3-bromophenyl)-3,6-di-tert-butyl-9H-carbazole
was synthesized according to reference.l’l 2-chloro-4-cyclohexyl-6-phenyl-1,3,5-
triazine was synthesized according to reference.l3! D2T was synthesized according to

reference.l!
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Scheme S1. Synthetic route of p-D2T, m-D2T and c-D2T.

Synthesis of 10-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10H,10'"H-
dispiro[acridine-9,10'-indeno[2,1-b]fluorene-12',9"-acridine/(1)

D2T (1 g, 1.72 mmol) and 9-(4-bromophenyl)-3,6-di-tert-butyl-9H-carbazole (624
mg, 1.44 mmol) and toluene (50 mL) were added into a 250 mL double neck flask in
N2 atmosphere. The mixture was degassed for 10 min, acetic acid palladium (II) (73
mg, 0.325 mmol), sodium tert-butoxide (277 mg, 2.88 mmol), and tri-tert-
butylphosphine tetrafluoroborate (189 mg, 0.65 mmol) were added. The mixture was

heated to 110 °C and continually stirred for 8 h. After cooling and vacuum filtrating,



the filtrate was evaporated under reduced pressure. Purification via column
chromatography on silica gel (300-400 mesh, petroleum ether/dichloromethane = 2:1,
v/v) afforded a as a white solid (0.8 g, 60% yield). 'H NMR (400 MHz, CDCls): 6 (ppm)
8.27 (s, IH, Ar-H), 8.18 (s, 2H, Ar-H), 7.91-7.85 (m, 4H, Ar-H), 7.63-7.61 (d, /=8 Hz,
2H, Ar-H), 7.54-7.55 (d, J=4 Hz, 4H, Ar-H), 7.46-7.44 (m,2H, Ar-H),7.35 (dd, J=7.2,
10 Hz, 3H, Ar-H), 7.22-7.12 (m, 2H, Ar-H), 7.03-6.92 (m, 4H, Ar-H), 6.76 (d,J=9.3
Hz, 2H, Ar-H), 6.61-6.40 (m, 10H, Ar-H), 1.49 (s, 18H, -CH3).

Synthesis of 10-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10""-(4-(4,6-diphenyl-
1,3,5-triazin-2-yl)phenyl)-10H,10'" H-dispiro[acridine-9,10'-indeno[2,1-b]fluorene-
12',9"-acridine]( p-D2T)

1 (1 g, 1.05 mmol) and 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine ( 1.2g, 3.2
mmol) and toluene (20 mL) were added into a 100 mL double neck flask in N2
atmosphere. The mixture was degassed for 10 min, acetic acid palladium (II) (80 mg,
0.36 mmol), sodium tert-butoxide (202 mg, 2.1 mmol), and tri-tert-butylphosphine
tetrafluoroborate (116 mg, 0.4 mmol) were added. The mixture was heated to 110 °C
and continually stirred for 8 h. After cooling and vacuum filtrating, the filtrate was
evaporated under reduced pressure. Purification via column chromatography on silica
gel (300-400 mesh, petroleum ether/dichloromethane = 5:1, v/v) afforded as light
yellow solid (945 mg, 90% yield). '"H NMR (400 MHz, CDCls) 6 9.06 (d, J = 8.4 Hz,
2H, Ar-H), 8.81 (d, J=9.7 Hz, 4H, Ar-H), 8.33 (s, 1H, Ar-H), 8.18 (s, 2H, Ar-H), 7.94
(d, J=17.5 Hz, 2H, Ar-H), 7.89 (d, J = 6.3 Hz, 2H, Ar-H), 7.68-7.55 (m, 12H, Ar-H),
7.54 (m, 14H, Ar-H), 7.51-7.43 (m, 2H, Ar-H), 7.38 (t, /= 7.8 Hz, 2H, Ar-H), 6.97 (dt,
J=28.6,4.7 Hz, 2H, Ar-H), 6.92-6.85 (m, 2H, Ar-H), 6.60 (m, 9H, Ar-H), 6.47 (d, J =
8.4 Hz, 2H, Ar-H), 6.41 (d, J= 8.3 Hz, 2H, Ar-H), 1.49 (s, 18H, -CH;). 3C NMR (101
MHz, CDCl;) 6 171.89, 171.04, 158.13, 158.06, 156.01, 155.80, 145.08, 143.32,
141.66, 141.58, 141.26, 141.00, 139.29, 138.96, 138.25, 136.95, 136.84, 136.05,
132.71, 131.74, 131.60, 129.03, 128.81, 128.72, 128.41, 127.76, 127.69, 127.55,
127.32, 127.28, 125.10, 125.03, 123.80, 123.66, 120.85, 120.05, 116.39, 114.56,
114.53, 110.90, 109.25, 56.90, 34.78, 32.02. HRMS (ESI): m/z Calcd for Co;HggNg
(M+H)" 1245.587, found 1245.563. Anal. Calcd. for Co;HegNg: C, 87.75; H, 5.50; N,



6.75. found: C, 86.52; H, 5.23; N, 6.52.
Synthesis of 10-(3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10H,10''H-
dispirofacridine-9,10'-indeno[2,1-b]fluorene-12',9"-acridine/(2)

D2T (700 mg, 1.2 mmol) and 9-(3-bromophenyl)-3,6-di-tert-butyl-9H-carbazole
(433 mg, 1 mmol) and toluene (40 mL) were added into a 100 mL double neck flask in
N2 atmosphere. The mixture was degassed for 10 min, acetic acid palladium (II) (50
mg, 0.22 mmol), sodium tert-butoxide (230 mg, 2.4 mmol), and tri-tert-butylphosphine
tetrafluoroborate (100 mg, 0.345 mmol) were added. The mixture was heated to 110 °C
and continually stirred for 8 h. After cooling and vacuum filtrating, the filtrate was
evaporated under reduced pressure. Purification via column chromatography on silica
gel (300-400 mesh, petroleum ether/dichloromethane = 2:1, v/v). White solid of 2 was
obtained in 55% yield(515 mg). "H NMR (500 MHz, CDCl;) 8 8.18 (d, J=2, 2H, Ar-H),
8.17 (s, 1H, Ar-H), 7.91-7.83 (m, 3H, Ar-H), 7.77 (d, J = 8.0 Hz, 1H, Ar-H), 7.64 (s,
1H, Ar-H), 7.53 (d, J=10.6 Hz, 2H, Ar-H), 7.43 (d, J = 8.7 Hz, 2H, Ar-H), 7.41-7.26
(m, 4H, Ar-H), 7.25-7.21 (m, 2H, Ar-H), 7.14 (t, /= 7.5 Hz, 1H, Ar-H), 6.93 (m, J =
8.5, 7.0, 1.7 Hz, 2H, Ar-H), 6.88-6.81 (m, 2H, Ar-H), 6.55 (t, J = 7.5 Hz, 2H, Ar-H),
6.49 (dd, J=17.8, 1.6 Hz, 2H, Ar-H), 6.44 (d, J = 7.1 Hz, 3H, Ar-H), 6.35 (d, /= 6.5
Hz, 2H, Ar-H), 6.28 (d, /= 8.0 Hz, 2H, Ar-H), 5.76 (s, 1H, Ar-H), 1.48 (s, 18H, -CH3).
Synthesis of 10-(3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10'"-(4-(4,6-diphenyl-
1,3,5-triazin-2-yl)phenyl)-10H,10""H-dispiro[acridine-9,10'-indeno[2,1-b]fluorene-
12',9"-acridine] (m-D2T)

2 (620 mg, 0.67 mmol) and 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (520 mg,
1.34 mmol) and toluene (20 mL) were added into a 100 mL double neck flask in N2
atmosphere. The mixture was degassed for 10 min, acetic acid palladium (IT) (50 mg,
0.22 mmol), sodium tert-butoxide (129 mg, 1.34 mmol), and tri-tert-butylphosphine
tetrafluoroborate (50 mg, 0.17 mmol) were added. The mixture was heated to 110 °C
and continually stirred for 8 h. After cooling and vacuum filtrating, the filtrate was
evaporated under reduced pressure. Purification via column chromatography on silica
gel (300-400 mesh, petroleum ether/dichloromethane = 5:1, v/v) afforded as light
yellow solid (670 mg, 84% yield). 'H NMR (400 MHz, CDCl;) 6 9.04 (d, J = 8.5 Hz,



2H, Ar-H), 8.83 (d, /J=7.9 Hz, 4H, Ar-H), 8.31 (s, 1H, Ar-H), 8.15 (s, 2H, Ar-H), 7.96-
7.83 (m, 3H, Ar-H), 7.79 (d, J= 8.2 Hz, 1H, Ar-H), 7.71 (t, /=2 Hz, 1H, Ar-H), 7.66-
7.57 (m, 10H, Ar-H), 7.47 (m, 6H, Ar-H), 7.42-7.30 (m, 3H, Ar-H), 7.15 (t,J= 7.4 Hz,
1H, Ar-H), 7.01-6.92 (m, 2H, Ar-H), 6.91-6.82 (m, 2H, Ar-H), 6.59 (m, 8H, Ar-H),
6.49 (d, J = 8.4 Hz, 2H, Ar-H), 6.37 (d, J = 8.0 Hz, 2H, Ar-H), 1.47 (s, 18H, -CHj3).
BCNMR (101 MHz, CDCl;) 3 171.88, 171.05, 158.18, 158.07, 155.91, 155.82, 145.08,
143.30, 142.52, 141.71, 141.64, 141.09, 140.96, 140.87, 138.80, 136.83, 136.73,
136.33, 136.08, 132.72, 132.25, 131.72, 131.59, 129.39, 129.16, 129.04, 128.74,
128.43, 127.77, 127.65, 127.53, 127.49, 127.37, 127.27, 126.39, 125.17, 125.05,
124.99, 123.93, 123.64, 120.84, 120.04, 119.99, 116.33, 114.53, 114.37, 110.84,
109.16, 56.87, 34.76, 31.99. HRMS (ESI): m/z Calcd for Co;HggNg (M+H)"™ 1245.587,
found 1245.452. Anal. Calcd. for Co;HgsNg: C, 87.75; H, 5.50; N, 6.75, found: C, 87.43;
H, 5.25; N, 6.79.

Synthesis of 10-(4-(4-cyclohexyl-6-phenyl-1,3,5-triazin-2-yl)phenyl)-10""-(4-(3,6-
di-tert-butyl-9H-carbazol-9-yl)phenyl)-10H, 10" H-dispiro[acridine-9,10'-
indeno[2,1-b]fluorene-12',9"-acridine] (c-D2T)

1 (1.1 g, 1.2 mmol) and 2-(4-bromophenyl)-4-cyclohexyl-6-phenyl-1,3,5-triazine
(435 mg, 0.94 mmol) and xylene (10 mL) were added into a 50 mL double neck flask
in N2 atmosphere. The mixture was degassed for 10 min, acetic acid palladium (IT) (50
mg, 0.22 mmol), sodium tert-butoxide (181 mg, 1.88 mmol), and tri-tert-
butylphosphine tetrafluoroborate (116 mg, 0.4 mmol) were added. The mixture was
heated to 110 °C and continually stirred for 8 h. After cooling and vacuum filtrating,
the filtrate was evaporated under reduced pressure. Purification via column
chromatography on silica gel (300-400 mesh, petroleum ether/dichloromethane = 5:1,
v/v) afforded as pale yellow solid (952 mg, 81% yield). '"H NMR (400 MHz, CDCl;) &
8.95 (d, J=6.5 Hz, 2H, Ar-H), 8.70 (d, /= 8.0 Hz, 2H, Ar-H), 8.33 (s, 1H, Ar-H), 8.18
(s,2H, Ar-H), 7.93 (dd, J=7.6, 3.3 Hz, 2H, Ar-H), 7.88 (d, /= 8.5 Hz, 2H, Ar-H), 7.67-
7.53 (m, 12H, Ar-H), 7.46 (d, J = 7.5 Hz, 2H, Ar-H), 7.42-7.34 (m, 2H, Ar-H), 7.22 (t,
J=28.0 Hz, 2H, Ar-H), 6.96 (dt, J = 8.5, 4.6 Hz, 2H, Ar-H), 6.92-6.83 (m, 2H, Ar-H),



6.63-6.53 (m, 8H, Ar-H), 6.46 (d, /= 8.4 Hz, 2H, Ar-H), 6.38 (d, /= 8.4 Hz, 2H, Ar-H),
2.97 (t, J=11.5 Hz, 1H, -CH;), 2.17 (d, J = 12.1 Hz, 2H, -CH3;), 1.96-1.75 (m, 5H, -
CHa), 1.49 (s, 18H, -CH3), 1.39-1.22 (m, 3H, -CH3). 3C NMR (101 MHz, CDCl;) &
183.30, 171.44, 170.59, 158.18, 158.14, 156.06, 155.84, 144.90, 143.36, 141.72,
141.61, 141.29, 141.04, 139.33, 139.00, 138.29, 136.98, 136.84, 136.50, 136.16,
132.74, 132.54, 131.70, 131.57, 128.97, 128.85, 128.70, 128.45, 127.80, 127.72,
127.58, 127.36, 127.30, 125.13, 125.10, 125.02, 123.84, 123.71, 120.87, 120.09,
116.43, 114.58, 110.94, 109.30, 56.93, 47.19, 34.82, 32.06, 31.29, 26.08, 26.05. HRMS
(ESI): m/z Caled for Co H74Ng (M+H)™ 1250.597, found 1250.287. Anal. Calcd. for
CoiH74Ng: C, 87.73; H, 5.96; N, 6.71, found: C, 87.30; H, 5.75; N, 6.58.

Exciton Lifetime and Rate Constant
The rate constants of ISC (kisc) and RISC (kgrisc) of three emitters based on the

following equations:
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In this study, the prompt PLQY (®,) and delayed PLQY (®g4) were determined by using
the total PLQY and the integrated intensity ratio between prompt and delayed
components which was calculated from transient photoluminescence measurements.

The intensity ratio between prompt (r,) and delayed (r4) components were determined



using two fluorescent lifetimes (7, 7q) and fitting parameter (A, Ag) as follow.

t t
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I1(t) = Aje U Age (6)

4,7,

"TAT 1A
pTp + A7, 7)

Agty

Tyg=—

Ap‘rp + A1, (8)

Then, the prompt PLQY (®,) and delayed PLQY (®g4) were determined using intensity

ratio (1, 1q) and total PLQY.

Piprar = Pp T Py 9)
q)p = rpq)total (10)
Cu=74Potal (11)
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Figure S2. Theoretical simulation results of ground and excited states of m-D2T using
DFT under B3LYP/6-31g** level and TD-DFT under pbe0/def2SVP level,
respectively. Cyan, magenta, lime and blue: distribution of LUMO, HOMO, hole NTO

and particle NTO.
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Figure S4. Transient PL decay of p-D2T, m-D2T and ¢-D2T in doped films (10 wt%

in DPEPO) under oxygen free atmosphere in the scale of 25 ps.
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Table S1. Crystallographic data for p-D2T.

Compound p-D2T
CCDC No. 2128754
Formular Co1HesNog
Formula weight 1245.51
Crystal system monoclinic
Space group P21/n

a/A 18.7905(19)
b/A 18.7820(18)
c/A 21.137(2)
a/° 90

pre 113.331(3)
v/° 90
Volume/A3 6849.8(12)
Z 4

Pealc@/cm? 1.208
wmm'! 0.070
F(000) 2624.0

Crystal size/mm3
20 range (deg)
Goodness-of-fit on F?

Ry/WR, [[>=20 (I)]

0.15 % 0.08 x 0.05

4.198 to 51.384

1.027

0.0555/0.1237

Table S2. Data of SOC matrix of p-D2T, m-D2T and m-D2T.
SOCsi-r1 (cm™) SOCsi-12 (cm™) SOCs-13 (cm™)

p-D2T 0.01789 0.02299 0.70354
m-D2T 0.01435 0.03262 0.71105
c-D2T 0.06550 0.20198 0.72130
Reference

1. T. Lu, F. Chen, F., Multiwfn: a multifunctional wavefunction analyzer. J Comput



Chem 2012, 33, 580-592.

2. W. Sun, N.L. Zhou, Y. Xiao, S.R. Wang, X.G. Li, Novel carbazolyl-substituted
spiro[acridine-9,9'-fluorene] derivatives as deep-blue emitting materials for OLED
applications. Dyes Pigm. 2018, 154, 30-37.

3.J. Hu, Q. Li, X.D. Wang, S.Y. Shao, L.X. Wang, X.B. Jing, F.S. Wang. Developing
through-space charge transfer polymers as a general approach to realize full-color and
white emission with thermally activated delayed fluorescence. Angew. Chem. Int. Ed.
2019, 58, 8405-8409.

4. Z.W. Liu, G.G. Li, H. Liu, C.J. Zhou, K. Li, Z.M. Wang, C.L. Yang, Side by Side
Alignment of Donors Enabling High-Efficiency TADF OLEDs with Insensitivity to
Doping Concentration. Adv. Optical. Mater. 2021, 9, 2101410



NMR spectra

'"H NMR spectra of 2-Chloro-4-cyclohexyl-6-phenyl-1,3,5-triazine (CDCl53)
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'H NMR spectra of 1 (CDCl5)
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'H NMR spectra of 2 (CDCls)
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"H NMR spectra of p-D2T (CDCls)
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13C NMR spectra of p-D2T (CDCl5)
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'H NMR spectra of m-D2T (CDCl;)
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13C NMR spectra of m-D2T (CDCl;)
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'H NMR spectra of ¢-D2T (CDCl;)
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13C NMR spectra of ¢-D2T (CDCl3)
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Mass spectrometry
p-D2T
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