Supporting Information

Diameter-optimized PVA@PPy nanofibers: MXene interlayer space expansion without sacrificing electron transport

Jinli Li^a, Zhiqian Cao^b, Haibo Hu^b and Derek Ho^{a, c*}

^{*a*} Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.

^b School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of education, Anhui University, Hefei, China

^c Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, China

E-mail: derekho@cityu.edu.hk

Figure S1. SEM of (a) Ti_3AlC_2 MAX phase precursor (b) etched multi-layered MXene (c) TEM image of few-layered MXene sheet and (d) corresponding AFM image.

Figure S2. SEM image of annealed PVA nanofibers before coated using PPy.

Figure S3. SEM and elemental mappings of N, Ti, and C within the MXene/PVA@PPy-L hybrid film.

Figure S4. Electrical conductivity of pristine MXene thin-film and MXene/PVA@PPy hybrid films of different diameters – small (S), medium (M), and large (L) and MXene/PVA hybrid film.

Figure S5. CV profiles of the micro-supercapacitor units employing (a) pristine MXene film, (c) MXene/PVA/PPy-S, (e) MXene/PVA@PPy-M and (g) MXene/PVA@PPy-L across various scanning rates, and (b,d,f,h) the corresponding GCD profiles.

Figure S6. Areal energy density of the as-fabricated ZMSCs based on pristine MXene film and MXene/PVA@PPy hybrid film electrodes employing PVA@PPy nanofibers with three different diameters.

Figure S7. Specific capacitance of the as-fabricated ZMSCs based on pristine MXene film and MXene/PVA@PPy hybrid film electrodes employing PVA@PPy nanofibers with three different diameters versus current densities.

Electrodes	Electrolyte	Voltage Windows[V]	Areal Capacitance [mF/cm ²]	Areal Energy Density [µWh/cm²]	Areal Power Density [mW/cm ²]	Ref.
		Syn	nmetrical			
MXene/PVA@PPy	1M Zn(CF ₃ SO ₃) ₂ /PAM	0-1.2	195	Max: 38.4	Max:2.51	This
				Min:10.8	Min:0.119	work
Be ²⁺ -MXene	Gelatin/ZnSO ₄	0-0.6	77.2	3.86	0.12	1
MXene-Mg ²⁺	3M H ₂ SO ₄ /PVA	0-0.6	409	Max:21.6	Max:1.1	2
				Min:7.4	Min:0.1	
MXene/BC@PPy	1M H ₂ SO ₄ /PVA	0-0.6	200	10		3
MXene/BCF	1M Zn(CF ₃ SO ₃) ₂ /PAM	0-1.2	179	34		4
MXene/BC	1M H ₂ SO ₄ /PVA	0-0.6	112	5.54	0.114	5
MXene/MPFs	1M H ₂ SO ₄ /PVA	0-0.6	408	20.4	0.15	6
MXene	3M H ₂ SO ₄ /PVA	0-0.6	61.7	0.76	0.33	7
Screen-printed MXene	3M H ₂ SO ₄ /PVA	0-0.6	158	40.5	0.26	8
MXene	H ₂ SO ₄ /PVA	0-0.5	43	0.32	0.158	9
		Asyı	nmetrical			
CNT@PPy//MXene	3M H ₂ SO ₄ /PVA	0-1.4	150	40.5		10
MXene//Co-Al-LDH	PVA/KOH	0.4-1.45	40	8.84	0.23	11
RuO2//MXene	1M H ₂ SO ₄ /PVA	0-1.5	60	19	1.5	12
MXene/AC	Na ₂ SO ₄ /PVA	0-1.6	7.8	3.5/mWh/cm ³	100/mW/cm ³	13
ZIF-C//NiCoP@NiOOH	PVA/KOH	0-1.4	54.7	13.9	0.27	14

Table S1 Performance of recently reported advanced MXene based symmetrical and asymmetrical micro-supercapacitors.

Reference

1. Li, S.; Shi, Q.; Li, Y.; Yang, J.; Chang, T.-H.; Jiang, J.; Chen, P.-Y. *Advanced Functional Materials* **2020**, 30, (40), 2003721.

2. Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S.-P.; Yang, H.; Little, J. M.; Dissanayake, T. U.; Li, K.; Yang, J.; Guo, Y.-X.; Yang, H. Y.; Woehl, T. J.; Chen, P.-Y. *Advanced Energy Materials* **2021**, 11, (35), 2101494.

- 3. Wu, Y.; Hu, H.; Yuan, C.; Song, J.; Wu, M. Nano Energy 2020, 74, 104812.
- 4. Cao, Z.; Fu, J.; Wu, M.; Hua, T.; Hu, H. Energy Storage Materials 2021, 40, 10-21.
- 5. Jiao, S.; Zhou, A.; Wu, M.; Hu, H. Advanced Science 2019, 6, (12), 1900529.
- 6. Zhao, W.; Peng, J.; Wang, W.; Jin, B.; Chen, T.; Liu, S.; Zhao, Q.; Huang, W. Small 2019, 15, (18), 1901351.

7. Zhang, C.; Kremer, M. P.; Seral-Ascaso, A.; Park, S.-H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. *Advanced Functional Materials* **2018**, *28*, (9), 1705506.

8. Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. *Advanced Materials* **2020**, 32, (17), 2000716.

9. Zhang, C.; McKeon, L.; Kremer, M. P.; Park, S.-H.; Ronan, O.; Seral - Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C.; Anasori, B.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. *Nature Communications* **2019**, 10, (1), 1795.

- 10. Li, Z.; Song, J.; Hu, H.; Yuan, C.; Wu, M.; Ho, D. Journal of Materials Chemistry A 2021, 9, (5), 2899-2911.
- 11. Xu, S.; Dall'Agnese, Y.; Wei, G.; Zhang, C.; Gogotsi, Y.; Han, W. Nano Energy 2018, 50, 479-488.
- 12. Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. Advanced Energy Materials 2018, 8, (13), 1703043.

13. Xie, Y.; Zhang, H.; Huang, H.; Wang, Z.; Xu, Z.; Zhao, H.; Wang, Y.; Chen, N.; Yang, W. *Nano Energy* **2020**, 74, 104928.

14. Qiu, M.; Sun, P.; Cui, G.; Tong, Y.; Mai, W. ACS Nano 2019, 13, (7), 8246-8255.