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1. Experimental Section

1.1 The synthesis procedure
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Scheme S1. The molecular structure and synthetic process of Stbuph-bodipy.
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Scheme S2. The molecular structure and synthetic process of phCz-4CzTPN.
Unless otherwise indicated, all materials and solvents were obtained from commercial suppliers and
used without further purification. 2,3,5,6-tetrafluoroterephthalonitrile was purchased from Energy
Chemical. 4-((6-(4-(9H-carbazol-9-yl)phenoxy)hexyl)oxy)-9H-carbazole was prepared according
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to the literature.

The synthesis of (E)-1,3-bis(4-(tert-butyl)phenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (1)
A mixture of 4-tert-butylbenzoyl chloride (12.43 g, 63.2 mmol), 4-tert-Butylphenylacetylene (10 g,
63.2 mmol), dry Et;N (200 mL) and Pd(OAc), (0.71 g, 3.16 mmol) was stirred at room temperature
for 4 h in nitrogen until complete consumption of starting material as monitored by TLC. If the
solubility is not good, a small amount of THF can be added. After completion, the reaction mixture
was extracted with ethyl acetate. The organic layer was washed with water to dissolve the amine
hydrochloride formed. The organic layer was then separated, dried over MgSQ,, and concentrated
under vacuum. After dried overnight under vacuum conditions, the crude product was directly used
in the next reaction.

A mixture of the crude product, 2-propynylamine (3.83g, 69.54 mmol), and CH;0H (150 mL) was
stirred at 65 °C under air overnight. After 2-propynylamine was exhausted completely (monitored
by TLC), the solvent was evaporated and the crude product was purified by column chromatography
on silica gel (petroleum ether /dichloromethane = 3:1, v/v) to give (E)-1,3-bis(4-(tert-butyl)phenyl)-
3-(prop-2-yn-1-ylamino)prop-2-en-1-one as a white solid (13.2 g, 35.4 mmol). Yield: 56%. 'H
NMR (600 MHz, CDCl;): 6 11.31 (s, 1H), 7.84-7.83 (m, 2H), 7.49-7.47 (m, 2H), 7.44-7.41 (m, 4H),
5.84 (s, 1H), 3.98-3.96 (m, 2H), 2.31 (s, 1H), 1.36 (s, 9H), 1.36 (s, 9H).

The synthesis of 2,4-bis(4-(tert-butyl)phenyl)-1H-pyrrole (2)

A mixture of 1 (7.46 g, 20 mmol), K,CO5 (2.76 g, 20 mmol), and NMP (100 mL) was stirred at 90
°C under air atmosphere for 12 h. After cooling to room temperature, the mixture was extracted with
CH,Cl,, and the organic layer was washed with water and then dried over MgSO, and concentrated.
The crude product was purified by column chromatography on silica gel (petroleum ether
/dichloromethane = 4:1, v/v) to give 2,4-bis(4-(tert-butyl)phenyl)-1H-pyrrole (3.31 g, 10 mmol) as
a white solid. Yield: 50%. 'H NMR (600 MHz, CDCl;): & 8.39 (s, 1H), 7.50 (m, 2H), 7.45-7.42 (m,
2H), 7.40-7.38 (m, 4H), 7.09 (s, 1H), 6.76 (s, 1H), 1.34 (s, 18H).

The synthesis of 1,3,7,9,10-pentakis(4-(tert-butyl)phenyl)-5,5-difluoro-5H-414,514-
dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (Stbuph-bodipy)

The intermediate 2,4-bis(4-(tert-butyl)phenyl)-1H-pyrrole (1.15 g, 3.47 mmol) was completely
dissolved in a solution of dry dichloromethane (25 mL), and 4-tert-butylbenzaldehyde (0.26 g, 1.58
mmol) was added. The mixture was stirred under nitrogen atmosphere for 12 h after the BF;°Et,0
(107 uL, 1.58 mmol) was added. Then, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.72 g,
3.16 mmol) was added into the solution to continue for 4 hours. After the reaction, the organic layer
was washed with saturated sodium bicarbonate aqueous solution, then extracted with water, and the
blended organic layer was concentrated and dried.

Then, the crude material was dissolved in dry dichloromethane (25 mL), and dried triethylamine
(4.68 mmol) and dried boron trifluoride ethyl ether (9.36 mmol) were added, and then was heated
to reflux and reacted for 24 h under the protection of nitrogen. After completion, the organic phase
was washed with saturated sodium bicarbonate aqueous solution, and then extracted with water. The
organic phase was dried and further separated and purified. Finally, the crude product was isolated
by column chromatography on silica gel (petroleum ether /dichloromethane = 3:1, v/v) to give
1,3,7,9,10-pentakis(4-(tert-butyl)phenyl)-5,5-difluoro-5H-414,514-dipyrrolo[ 1,2-¢c:2',1'-
f][1,3,2]diazaborinine (0.2 g, 0.23 mmol) as a violet black solid. Yield: 15%. '"H NMR (600 MHz,
CDCly): 6 7.84-7.83 (m, 4H), 7.44-7.45 (m, 4H), 6.97-6.96 (m, 2H), 6.92-6.91 (m, 4H), 6.71-6.70
(m, 4H), 6.60-6.59 (d, 2H), 6.50 (s, 2H), 1.35 (s, 18H), 1.19 (s, 18H), 1.06 (s, 9H). 13C NMR (150
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MHz, CDCl;): 6 = 156.49, 152.35, 148.84, 147.72, 133.37, 132.04, 130.88, 129.88, 129.26, 129.24,
128.81, 128.33, 125.34, 125.21, 124.44, 124.19, 123.48, 38.75, 34.79, 34.32, 34.24, 31.33, 31.26,
31.24, 31.09, 30.38, 28.94, 23.79, 22.95, 14.05, 10.97. MS (MALDI-TOF) [m/z]: [M]" calcd for
CsoHg7BF,N,, 852.54; found, 853.543. Elemental analysis: calcd for CsoHg7BF,N,: C 83.08, H 7.92,
N 3.28; found: C 83.22, H 7.97, N 3.20.

The synthesis of 2,3,5,6-tetrakis(4-((6-(4-(9H-carbazol-9-yl)phenoxy)hexyl)oxy)-9H-carbazol-
9-yDterephthalonitrile (phCz-4CzTPN)

Under nitrogen atmosphere, 4-((6-(4-(9H-carbazol-9-yl)phenoxy)hexyl)oxy)-9H-carbazole (1 g,
1.9 mmol ) in anhydrous THF (40 ml) was added dropwise into an anhydrous THF (20 ml) solution
containing NaH (0.12 g, 5 mmol) for 15 min and stirred for 3 h. Then, 2,3,5,6-
tetrafluoroterephthalonitrile (0.065 g, 0.325 mmol) in anhydrous THF (20 ml) was added dropwise
for 15 min. The solution was stirred for 24 h at room temperature. After that, 250 mL water was
added into the solution and the mixture was extracted with CH,Cl, for three times. The combine
organic layer was dried with anhydrous MgSO, and the solvent was removed under vacuum. The
precipitate was purified by column chromatography on silica gel, resulted in the bright orange-red
product (0.58 g, 80%). 'H NMR (600 MHz, CDCl;):  8.16-8.11 (dd, J=17.5 Hz, 8.1 Hz, 7H), 8.09-
8.03 (dt, J=15.4 Hz, 8.8 Hz, 4H), 7.42-7.38 (dd, J=14.1Hz, 7.9 Hz, 15H), 7.33-7.32 (d, J=7.8 Hz,
8H), 7.29-7.28 (d, J=7.7 Hz, 10H), 7.23-7.20 (m, 5H), 7.16-7.12 (dd, J=16.9 Hz, 8.6 Hz, 6H), 7.09-
7.05 (dd, J=13.4 Hz, 7.1 Hz, 12H), 7.02-7.01 (d, J=5.8 Hz, 3H), 6.96-6.93 (m, 2H), 6.89-6.87 (m,
4H), 4.13—4.11 (m, 8H), 4.04-4.02 (t, J=6.3 Hz, 8H), 1.95-1.88 (dd, J=25.5 Hz, 18.8 Hz, 16H), 1.64
(s, 16H). BC NMR (150 MHz, CDCl5): 6 = 158.38, 155.55, 141.37, 140.25, 137.97, 130.07, 128.49,
126.89, 125.81, 124.82, 123.95, 123.27, 123.08, 122.81, 121.76, 120.22, 119.60, 115.56, 113.80,
111.69, 109.71, 108.97, 103.85, 103.76, 102.30, 68.12, 67.92, 29.24, 29.20, 26.02, 25.88. MS
(MALDI-TOF) [m/z]: [M]* caled for Cy5,H24N¢Og, 2218.73; found, 2220.674. Elemental analysis:
caled for Cys,H 24N ¢Og: C 82.28, H 5.63, N 6.31; found: C 82.26, H 5.67, N 6.29.

1.2 Materials and measurements

All compounds are commercial from Chemical Company Ltd. and used in the reaction directly. All
reactions were carried out under N, atmosphere. 'H NMR and '3C NMR spectra were acquired using
a Bruker Dex-600/150 NMR instrument using CDCl; as a solvent. Mass spectra (MS) were recorded
on by matrix assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-
MS) using a BRUKER DALTONICS instrument, with a-cyano-hydroxycinnamic acid as a matrix.
Elemental analysis was determined by an Elementar Vario EL CHN elemental analyzer. UV-vis
absorption spectra were recorded using a SHIMADZU UV-2600 spectrophotometer. Steady-state
photoluminescence (PL) spectra were obtained with a HORIBA FLUOROMAX-4
spectrophotometer at room temperature. The transient PL decay was obtained by EDIBURGH FLS-
1000 instruments. The low-temperature phosphorescence (PH) spectra were recorded on F-7000 FL
spectrophotometer after delayed 100 ps under liquid nitrogen. The solid PL quantum efficiencies
were measured using an integrating sphere under nitrogen at room temperature. Thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC) curves were carried out with a Netzsch
simultaneous thermal analyzer system (STA 409 PC) from 20 °C to 800 °C and DSC 2910
modulated calorimeter from 20 °C to 200 °C at a 10°C/min heating rate under N, atmosphere. Cyclic
voltammetry measurements were performed using a CHI750C voltammetric analyzer.
Electrochemical property was evaluated by cyclic voltammetry with three typical electrodes in dry
CH,Cl, solution (103 M) (oxidation process) with a rate of 100 mV/s. The CV system employed
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Bu4NPF6 as electrolyte. Platinum disk is used as the working electrode, platinum wire is regarded
as the counter electrode and silver wire is used as the reference electrode. Ferrocenium/ferrocene
(Fc/Fc+) was used as the external standard compound.

1.3 Computation Method

All calculations were conducted using the Gaussian 09 program. The molecular orbitals were
visualized using Gaussview 5.0. The geometries were optimized at the B3LYP/6-31G(d) level. The
transition energy and oscillator strength were calculated with TD-DFT method at the B3LYP/6-
31G(d) level.

1.4 OLED Device Fabrication

OLED devices were fabricated using a clean glass substrate coated with an ITO layer (150 nm) as
the anode, with a sheet resistance of 15 Q cm™ and an active pattern size of 2 x 2 mm?. Before
device fabrication, the glass substrates were sequentially cleaned in an ultrasonic bath with
deionized water, acetone and ethanol for three times, and then the ITO substrate was treated with
UV-ozone for 30 minutes. The OLED configuration was as follows: ITO (150 nm)/PEDOT:PSS
(50 nm)/EML(40 nm)/TPBi (40 nm)/Cs,COj; (2 nm)/Al (100 nm), where PEDOT:PSS and Cs,COs3
acted as the hole and electron injection layers, respectively. The TPBi and Al functioned as the
electron transport layers and the cathode, respectively. The PEDOT:PSS was directly spin-coated
on an ITO plate and annealed at 150 °C for 10 min. The EML was dissolved in 1, 2-dichloroethane
(10 mg mL-"), then spin-coated and annealed at 80 °C for 10 min under nitrogen atmosphere. Then,
the substrates were moved into a vacuum chamber to deposit TPBi, Cs,COj3, and Al sequentially
using a thermal evaporator. The current density—voltage- luminance characteristics, current
efficiency and power efficiency were tested using a Keithley 2636A Sourcemeter coupled with Si-
potodiodes calibrated with PR655. The EL spectra were collected with a Photo-Research PR655
SpectraScan. All the characterizations were performed at room temperature in ambient condition
without encapsulation. External quantum efficiencies of the devices were calculated assuming a

Lambertian emission distribution.
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Figure S1. "H NMR spectrum of 1.
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Figure S3. 'TH NMR spectrum of 5tbuph-bodipy.
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Figure S4. 13C NMR spectrum of 5tbuph-bodipy.
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Figure S5. Mass spectrum of Stbuph-bodipy.
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Figure S6. '"H NMR spectrum of phCz-4CzTPN.
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Figure S7. 13C NMR spectrum of phCz-4CzTPN.
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