A Water-Stable Luminescent Zn-MOF Based on a Conjugated π -electron Ligand as an

Efficient Sensor for Atorvastatin and Its Application in Pharmaceutical Samples

Luis D. Rosales-Vázquez,^a Josue Valdes-García,^a J. M. Germán-Acacio,^b José C. Páez-Franco,^b Diego Martínez-Otero,^c

Alfredo R. Vilchis-Néstor, Joaquín Barroso-Flores,^c Víctor Sánchez-Mendieta^c and Alejandro Dorazco-González^{a*}

^aInstituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, México. E-mail: <u>adg@unam.mx</u>

^bRed de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición SZ-Universidad Nacional Autónoma de México (CIC-UNAM)

[°]Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Ixtlahuaca Km. 14.5, San Cayetano, Toluca, Estado de México, 50200, México. E-mail: <u>vsanchezm@uaemex.mx</u>

Electronic Supplementary Information

 Table S1. Crystal data and structural refinement parameters for 1.

Table S2. Selected bond distances (Å) and angles ($^{\circ}$) for 1.

Table S3. Recent electrochemical nanosensors for detection and quantification of ATV in aqueous media.

Fig. S1. Schematic trinuclear SBU of 1.

Fig. S2. Simplified topology network of 1.

Fig. S3. Space-filling views of $\mathbf{1}$, showing the two types of main pores; a) view along *c* axis. b) view along a plane perpendicular to *ac* plane.

Fig. S4. Depiction of void surfaces for a packing section of 1; view along *a*-axis.

Fig. S5. IR spectra of Zn LMOF 1 before and after storage in ethanol-water for 24 hours.

Fig. S6. TGA curve and DSC of 1.

Fig. S7. ¹³C CPMAS NMR (spinning rate at 8 kHz) spectrum for **1** and the asymmetric unit from the crystal structure (above).

Fig. S8. Rotational disorder of central phenyl in the crystal of 1.

Fig. S9. PXRD patterns of 1 and its solvent-free form.

Fig. S10. TGA curves of 1 and its solvent-free form.

Fig. S11. Solid-state emission spectra of free H_4 tptc ligand and 1. CIE-1931 chromaticity diagram of 1 and free H_4 tptc ligand.

Fig. S12. Emission spectra of 1 dispersed in ethanol-water at pH=7.0 upon additions of increasing amounts of FLV sodium and Stern-Volmer plot at 440 nm.

Fig. S13. Photoluminescence spectra of **1** after four cycles of ATV detecting-removal in ethanol-water at pH= 7.0. **Fig. S14.** PXRD pattern of **1** after four cycles of ATV detecting-removal.

Fig. S15. Emission spectra of **1** dispersed in ethanol-water (8/2, v/v) at pH= 7.0 upon additions of ATV from real pharmaceutical samples (Eturion 20).

Fig. S16. HPLC chromatogram of pure standard of atorvastatin calcium and calibration curve.

Fig. S17. PXRD pattern of as-synthesized Zn-LMOF 1 and Zn-LMOF 1 treated with ATV calcium for 24 h.

Fig. S18. IR spectra of as-synthesized Zn-LMOF 1 and Zn-LMOF 1 treated with ATV calcium for 24 h.

Fig. S19. SEM micrographs collected at different magnifications of A) as-synthesized Zn-LMOF **1** and b) Zn-LMOF **1** treated with ATV calcium.

Fig. S20. A selected representative section of the Zn-MOF 1 to calculate interaction with ATV.

General considerations

Materials and methods

All chemicals are commercially available ([1,1':4',1"]Terphenyl- 3,3",5,5"-tetracarboxylic acid 95%; Zn(CF₃SO₃)₂ 98%; atorvastatin calcium trihydrate 98%; rosuvastatin calcium 98%; pravastatin sodium salt hydrate 98%; fluvastatin sodium hydrate 98%; *N*,*N*-dimethylformamide 99% and ethanol anhydrous 98% from Sigma-Aldrich (St. Louis, Missouri, United States)) were used as received.

The FT-IR spectrum was recorded in the range of 4000–600 cm⁻¹ by using the standard Pike ATR cell on a Bruker Tensor 27 FT-IR spectrophotometer (Bruker Optik GmbH, Ettlingen, Germany). Elemental analysis for C, H, and N were carried out by standard methods using a Vario Micro-Cube analyzer.

Powder X-ray diffraction (PXRD) was conducted using a Bruker D8 ADVANCE X-ray powder diffractometer (Cu-K α , λ = 1.5418 Å) (Bruker AXS GmbH, Karlsruhe, Germany) with the 2 θ range of 5–50 \circ .

Thermogravimetric analyses were performed using TA Instruments equipment, under a dinitrogen atmosphere, at a heating rate of 10 \circ C min⁻¹, and from 25 to 450 \circ C.

Scanning electron microscopy (SEM) analysis were carried out using a JSM-6510LV microscope from JEOL (JEOL, Ltd, Akishima, Tokyo, Japan) equipped with a Bruker QUANTAX 200 energy-dispersive X-ray spectrometer (EDS) (Bruker Nano GmbH, Adlershof. Berlin, Germany) for elemental characterization. The crystals were dried at room-temperature conditions and fixed on Al stubs with carbon double tape and finally coated with a thin layer of gold using a Denton IV sputtering chamber before SEM imaging acquisition.

¹³C CPMAS NMR experiment was recorded with a Bruker Avance II 300 spectrometer (operating at: ¹H 300 MHz and ¹³C 75 MHz). *ss* NMR measurement was carried out on a 4 mm rotor double resonance and recorded with a contact time of 3 ms and a delay of 10 s at 8 kHz spinning rate at ambient temperature.

Liquid chromatographic determination of atorvastatin: From the extracted tablet stock solution, a dilution 1/400 was performed in ethanol, and an aliquot of 40 μ L was injected into an HPLC 1260 Infinity II (Agilent) coupled to a diode array detector. The UV detection was set to 220 nm. The mobile phase was 0.01 mol/L sodium dihydrogen phosphate pH 5.5 in distilled water and 40% ethanol (Sigma-HPLC grade) with a constant rate flow of 2 ml min⁻¹. The analysis was performed on a column Zorbax Eclipse XDB-C18 (Agilent) equilibrated at 37 °C. To calculate the final concentration of the sample extracted, a linear analytical curve (0 – 88 μ M mL¹) was prepared with pure atorvastatin (PHR1422-Sigma). The corresponding peak for atorvastatin is 2.55 min.

Empirical formula	$C_{50.21}H_{43.23}O_{20.41}Zn_3$		
Formula weight	1002.72		
Temperature (K)	100(2)		
Wavelength (Å)	1.54178		
Crystal system	Monoclinic		
Space group	C2/c		
<i>a</i> (Å)	10.1439(6)		
b (Å)	28.6171(15)		
c (Å)	18.2650(10)		
α (°)	90		
β (°)	90.938(3)		
γ (°)	90		
Volume (Å ³)	5301.4(5)		
Z	4		
D _{calc} (Mg/m ³)	1.256		
Absorption coefficient (mm ⁻¹)	2.090		
F(000)	2016		
Crystal size (mm ³)	0.172 x 0.098 x 0.059		
Theta range for data collection (°)	3.088 to 69.123		
Index ranges	-12<=h<=12, 0<=k<=34, 0<=l<=22		
Reflections collected	4849		
Independent reflections	4849 [R(int) = 0.0225]		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	4849 / 398 / 346		
Goodness-of-fit on F ²	1.120		
Final R indices [I>2sigma(I)]	R1 = 0.0749, $wR2 = 0.2167$		
R indices (all data)	R1 = 0.0815, $wR2 = 0.2230$		
Largest diff. peak and hole (e.Å ⁻³)	0.830 and -0.951		

 Table S1. Crystal data and structural refinement parameters for Zn-MOF, 1.

Table S2. Selected bond distances (Å) and angles ($^{\circ}$) for 1.

Bond lengths (Å)							
Zn(1)-O(1)	2.012(4)	Zn(2)-O(7)	2.000(5)				
Zn(1)-O(1)#1	2.012(4)	Zn(2)-O(2)#6	2.008(4)				
Zn(1)-O(6)#2	2.085(4)	Zn(2)-O(5)#7	2.013(4)				
Zn(1)-O(6)#3	2.085(4)	Zn(2)-O(4)#8	2.038(4)				
Zn(1)-O(4)#4	2.171(4)	Zn(2)-O(8)	2.425(6)				
Zn(1)-O(4)#5	2.171(4)	Zn(2)-O(7)	2.000(5)				

Angles (°)					
O(1)-Zn(1)-O(1)#1	180.0	O(6)#2-Zn(1)-O(4)#5	91.40(16)		
O(1)-Zn(1)-O(6)#2	95.51(17)	O(6)#3-Zn(1)-O(4)#5	88.60(16)		
O(1)#1-Zn(1)-O(6)#2	84.49(17)	O(4)#4-Zn(1)-O(4)#5	180.0(2)		
O(1)-Zn(1)-O(6)#3	84.49(17)	O(7)-Zn(2)-O(2)#6	105.40(19)		
O(1)#1-Zn(1)-O(6)#3	95.51(17)	O(7)-Zn(2)-O(5)#7	97.75(19)		
O(6)#2-Zn(1)-O(6)#3	180.0(2)	O(2)#6-Zn(2)-O(5)#7	102.20(19)		
O(1)-Zn(1)-O(4)#4	88.60(16)	O(7)-Zn(2)-O(4)#8	132.85(19)		
O(1)#1-Zn(1)-O(4)#4	91.40(16)	O(2)#6-Zn(2)-O(4)#8	107.50(16)		
O(6)#2-Zn(1)-O(4)#4	88.60(16)	O(5)#7-Zn(2)-O(4)#8	107.11(17)		
O(6)#3-Zn(1)-O(4)#4	91.40(16)	O(7)-Zn(2)-O(8)	57.71(19)		
O(1)-Zn(1)-O(4)#5	91.40(16)	O(2)#6-Zn(2)-O(8)	91.9(2)		
O(1)#1-Zn(1)-O(4)#5	88.60(16)	O(5)#7-Zn(2)-O(8)	154.54(18)		
		O(4)#8-Zn(2)-O(8)	88.29(2)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z #2 x-1/2,-y+1/2,z-1/2 #3 -x+3/2,y+1/2,-z+1/2 #4 -x+1,y,-z+1/2 #5 x,-y+1,z-1/2 #6 x-1/2,-y+1/2,z+1/2 #7 x-1,y,z #8 x-1/2,y-1/2,z .

Table S3. The comparison of the proposed sensor with other reported sensors for ATV determination with application in real samples.

Material	Detection technique	LOD (M)	Real Sample	Ref
AuNP-CNT/SPCE ^[a]	Electrochemistry	1.9 x 10 ⁻⁷	Tablet	[1]
Fe ₃ O ₄ @PPY / MWCNTs/ GE ^[b]	Electrochemistry	2.3 x 10 ⁻⁸	Tablet / human serum	[2]
EPPGE ^[c]	Electrochemistry	2.1 x 10 ⁻⁵	Tablet	[3]
PPY/CNTs/GCE ^[d]	Electrochemistry	1.5 X 10 ⁻⁹	Tablet	[4]
ZnO/NS/ CPE ^[e]	Electrochemistry	2.5 x 10 ⁻⁹	Tablet / urine	[5]
VACNT-GO ^[f]	Electrochemistry	9.4 X 10 ⁻⁹	Urine / human serum	[6]
CPE in micelles ^[g]	Electrochemistry	4.0 X 10 ⁻⁹	Tablet / urine	[7]
boron-doped diamond electrode	Electrochemistry	2.7 x 10 ⁻⁷	Tablet / urine	[8]
Ce(IV)-benzothiazolinone hydrazone	Spectrophotometry	8.2 x 10 ⁻⁶	Tablet	[9]
complex				
Zn-LMOF	Fluorescence	4.2 x 10 ⁻⁶	Tablet	This work

^[a]AuNP-CNT/SPCE = gold nanoparticles-carbon nanotubes/screen-printed carbon based electrode

^[b] $Fe_3O_4@PPY / MWCNTs/ GE=$ graphite electrode modified with polypyrrole-coated Fe_3O_4 nanohybrid by core-shell structure ($Fe_3O_4@PPyNPs$) and multiwall carbon nanotubes (MWCNTs)

^[d]PPY /CNTs / GCE = polypyrrole/carbon nanotube/glassy carbon electrode

- ^[e]ZnO/NS/ CPE = zinc oxide nanoparticles and nano-silica carbon paste electrode
- ^[f]VACNT-GO electrode = vertically aligned carbon nanotube/graphene oxide

 $^{[g]}CPE = carbon paste electrode$

- 1 R. O. Gunache, A. V. Bounegru and C. Apetrei, *Inventions*, 2021, 6, 57.
- 2 A. Tavousi, E. Ahmadi, L. Mohammadi-Behzad, V. Riahifar and F. Maghemi, *Microchem. J.*, 2020, 158, 105159.
- 3 O. Fazlolahzadeh, A. Rouhollahi and M. Hadi, Anal. Bioanal. Electrochem., 2016, 8, 566–577.

4 Z. Kamalzadeh and S. Shahrokhian, *Bioelectrochemistry*, 2014, 98, 1–10.

5 S. D. Bukkitgar, N. P. Shetti and R. M. Kulkarni, Sensors Actuators, B Chem., 2018, 255, 1462–1470.

- 6 T. A. Silva, H. Zanin, F. C. Vicentini, E. J. Corat and O. Fatibello-Filho, *Analyst*, 2014, **139**, 2832–2841.
- 7 J. C. Abbar and S. T. Nandibewoor, Colloids Surfaces B Biointerfaces, 2013, 106, 158–164.
- 8 B. Dogan-Topal, B. Uslu and A. S. Ozkan, *Comb. Chem. High Throughput Screen.*, 2007, **10**, 571–582.
- 9 S. Ashour, M. Bahbouh and M. Khateeb, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2011, 78, 913–917.

^[c]EPPGE = edge-plane pyrolytic graphite electrode

A

Fig. S1. A) Coordination mode of trinuclear SBUs of 1 and B) Schematic illustrations of the trinuclear core.

Fig. S2. Simplified topology network of 1.

Fig. S3. Space-filling views of **1**, showing pores, view along a plane perpendicular to *ac* plane (hydrogen atoms and lattice molecules are omitted for clarity). Atom codes: Zn (blue), C (grey), O (red) and H (white).

Fig. S4. Void surfaces for a packing section of 1; view along a axis. Zn (blue), C (grey), O (red) and H (white).

Fig. S5. IR spectra of Zn LMOF 1 before and after storage in ethanol-water for 24 hours.

Fig. S6. TGA curve and DSC of Zn-LMOF 1.

Fig. S7. ¹³C ss-CPMAS NMR (spinning rate at 8 kHz) spectrum for **1** and the asymmetric unit from the crystal structure (above).

Fig. S8. Rotational disorder of central phenyl in the crystal of 1.

Fig. S9. PXRD patterns of 1 and its solvent-free form.

Fig. S10. TGA curves of 1 and its solvent-free form.

Fig. S11. A) Solid-state emission spectra of Zn- MOF **1** (solid line) and free H₄tptc ligand (dot line). B) CIE-1931 chromaticity diagram of **1** and free H₄tptc ligand.

Fig. S12. A) Emission spectra (λ_{ex} = 330 nm) of 1 dispersed in ethanol-water (8/2, v/v) at pH= 7.0 upon additions of increasing amounts of FLV sodium. B) Stern-Volmer plot at 440 nm, the solid line was obtained by fitting to Eq. (2).

Fig. S13. A) Photoluminescence spectra of **1** after four cycles of ATV detecting-removal in ethanol-water at pH= 7.0. B) Quenching efficiencies of 1 in four cycles of ATV detection, in which **1** was treated with ethanol-DMF for the next cycles of detection.

Fig. S14. PXRD pattern of 1 after four cycles of ATV detecting-removal.

Fig. S15. Emission spectra (λ_{ex} = 330 nm) of 1 dispersed in ethanol-water (8/2, v/v) at pH= 7.0 upon additions of ATV from real pharmaceutical samples (Eturium 20). The test was carried out in triplicate.

Fig. S16. A) HPLC chromatogram of pure standard of atorvastatin calcium [100 ng/mL]. B) Calibration curve showing the peak height (mAU) as a function of atorvastatin calcium concentration [ng/mL]. The corresponding peak for atorvastatin is 2.55 min.

Fig. S17. PXRD pattern of as-synthesized 1 and 1 treated with ATV calcium for 24 h.

Fig. S18. IR spectra of as-synthesized 1 and 1 treated with ATV calcium for 24 h.

Fig. S19. SEM micrographs collected at different magnifications of A) as-synthesized **1** and b) **1** treated with ATV calcium.

Fig. S20. A selected representative section of 1 to calculate interaction with ATV.