Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

4-Nitrophenylacetylene-modified Cu₂O cubes and rhombic dodecahedra showing superior photocatalytic activity through surface band structure modulation

Shang-Ju Chan,^a Jui-Cheng Kao,^b Po-Jung Chou,^a Yu-Chieh Lo,^b Jyh-Pin Chou,^{*c} and Michael H. Huang^{*a}

^aDepartment of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan. E-mail: hyhuang@mx.nthu.edu.tw

^bDepartment of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

^cDepartment of Physics, National Changhua University of Education, Changhua 50007, Taiwan. E-mail: jpchou@cc.ncue.edu.tw

Chemicals

Copper(II) chloride anhydrous (CuCl₂, 98%, Alfa Aesar), hydroxylamine hydrochloride (NH₂OH·HCl, 99%, Sigma–Aldrich), sodium hydroxide (NaOH, 98%, SHOWA), sodium dodecyl sulfate (C₁₂H₂₅NaSO₄, \geq 99.0%, J. T. Baker), potassium carbonate (K₂CO₃, 99%, Alfa Aesar), absolute ethanol (C₂H₅OH, \geq 99.5%, Honeywell), acetonitrile (CH₃CN, 99.5%, Acros Organics), methyl orange (C₁₄H₁₄N₃NaO₃S, Alfa Aesar), 1-ethynyl-4-nitrobenzene (C₈H₅NO₂, 98%, Combi-Blocks), chromic(VI) acid (CrO₃, 99.5%, Acros Organics), and sodium oxalate (Na₂C₂O₄, \geq 99.0%, Sigma–Aldrich) were used as received. A spin-trapping reagent DMPO (5,5-dimethyl-1-pyrroline-N-oxide, 98%, Matrix Scientific) needs to be treated with activated charcoal for further purification. Milli-Q water (18.2 MΩ) was used to prepare all the solutions in the experiments.

Synthesis of Cu₂O polyhedra

For the synthesis of Cu₂O nanocubes and octahedra, 9.50 mL and 9.00 mL of deionized water were respectively added in the sample vials containing 0.087 g of SDS surfactant. Next, 0.1 mL of 0.1 M CuCl₂ solution was added into the vials that were kept in a 30-32 °C water bath with vigorous stirring, and 0.2 mL of 1.0 M NaOH solution was introduced. The color of solution would immediately change from colorless to light blue due to the formation of Cu(OH)₂. After stirring for 5 and 3 sec, 0.15 and 0.65 mL of 0.2 M NH₂OH·HCl reductant respectively were quickly injected and stirred for 10 sec. After stop stirring, and solutions were aged respectively for 50 and 25 min. The reason for shortening the aging time in making Cu₂O octahedra is because large particles and hexapods can form with a longer reaction time.

To make Cu₂O rhombic dodecahedra, 6.90 mL of deionized water was added to a vial containing 0.087 g of SDS, followed by the addition of 0.5 mL of 0.1 M CuCl₂ solution. The vial was kept in a 30–32 °C water bath with vigorous stirring. Next, 0.18 mL of 1.0 M NaOH solution was added. The solution color would immediately change from colorless to light blue due to the formation of Cu(OH)₂. After stirring for 5 sec, 2.40 mL of 0.1 M NH₂OH·HCl solution was quickly injected and stirred for 10 sec. Finally, the solution was aged for 50 min without stirring.

All products were centrifuged at 7000 rpm for 3 min (Hermle Z323 centrifuge) and washed with 1:1 volume ratio of water and ethanol to remove unreacted chemicals, and finally washed with absolute ethanol. After washing, the particles were dried and stored in a vacuum oven.

Fig. S1 Reaction conditions used to synthesize different Cu_2O crystals. The solution colors reflect the experimental observations.

	SDS (g)	0.1 M CuCl ₂ (mL)	1 M NaOH (mL)	NH₂OH∙HCl (M/mL)	H₂O (mL)
Cubes	0.087	0.1	0.20	0.2 / 0.15	9.50
Octahedra	0.087	0.1	0.20	0.2 / 0.65	9.00
RD	0.087	0.5	0.18	0.1 / 2.40	6.90

Table S1 Reagent amounts used for the synthesis of different Cu₂O crystals.

Fig. S2 SEM images of the prepared Cu_2O cubes, octahedra, and rhombic dodecahedra. The cubes can show slight depression at their face centers.

Fig. S3 Size distribution histograms of the prepared Cu_2O (a) cubes, (b) octahedra, and (c) rhombic dodecahedra. Over 250 counts were made for each sample.

Fig. S4 Reaction mechanism of 4-NA molecules on Cu₂O surface.

Fig. S5 Calculations of surface area and volume of a single Cu_2O cube, octahedron, and rhombic dodecahedron.

Table S2 Calculations of the amounts of Cu_2O crystals needed for photocatalysis experiments with a total particle surface area of 0.03 m².

	Cubes	Octahedra	RD		
size (nm)	330	350	180		
surface area for one particle (nm ²)	6.53 × 10⁵	2.12 × 10 ⁵	1.37 × 10 ⁵		
volume for one particle (nm ³)	3.59×10^7 7.15×10^6		4.12 × 10 ⁶		
fixed total surface area (m ²)	0.03	0.03	0.03		
number of particles	4.59 × 10 ¹⁰	1.42 × 10 ¹¹	2.18 × 10 ¹¹		
total volume (nm³)	1.65 × 10 ¹⁸	1.01 × 10 ¹⁸	8.98 × 10 ¹⁷		
density of Cu ₂ O (g/nm ³)	6.03 × 10 ⁻²¹				
weight (mg)	9.9	6.1	5.4		

Fig. S6 UV–vis absorption spectra of methyl orange as a function of irradiation time using (a–c) pristine Cu₂O cubes and 4-NA-modified cubes with and without adding K_2CO_3 , (d–f) pristine Cu₂O octahedra and 4-NA-modified octahedra with and without adding K_2CO_3 , and (g–i) pristine Cu₂O rhombic dodecahedra and 4-NA-modified rhombic dodecahedra with and without adding K_2CO_3 .

Fig. S7 Electron (CrO₃) and hole (Na₂C₂O₄) scavenger experiments. UV–vis absorption spectra of (a) 4-NA-modified Cu₂O cubes without adding scavengers, (b) adding 10 μ mole CrO₃, (c) 100 μ mole CrO₃ (d) 5 μ mole Na₂C₂O₄, and (e) 10 μ mole Na₂C₂O₄.

Fig. S8 (a) Plot of three cycles of MO photodegradation experiment using 4-NAfunctionalized Cu₂O cubes as the photocatalyst. K_2CO_3 was added. (b) SEM image of Cu₂O cubes after three cycles of photodegradation experiment. (c) XRD patterns of the particles after three cycles of photodegradation experiment.

Fig. S9 Geometric structures of 4-NA before (right panel) and after (left panel) adsorption on Cu₂O (a) {100}, (b) {110}, and (c) {111} surfaces. Top and side views are shown. 4-NA adsorption does not involve significant changes to the Cu₂O surface structure, except for the {100} case with neighboring oxygen atoms moving by ~1 Å due to molecular repulsion (see circled regions).

Fig. S10 Procedure used to purify DMPO.

Fig. S11 EPR spectra before and after DMPO purification.