Supporting Information

Interface compatibility: how to outperform classical Spiro-OMeTAD in Perovskite Solar Cells with carbazole derivatives.

Zeinab Kadi,^{1&} Ru Wang,^{2&} Nicolas Berton,¹ Marwan Kobeissi,³ Yue Jiang,^{2*} Jinwei Gao,^{2*} Bruno Schmaltz^{1*}

¹ Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA6299, Université de Tours, Parc Grandmont, 37200 Tours, France

² Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

³ Laboratoire Rammal Rammal, Equipe de synthèse Organique Appliquée SOA, Section V, Université Libanaise, Faculté des Sciences 5, Nabatieh 6573/14, Lebanon

Figure S1 J-V tests of devices without IL.

Figure S2 Distributions of a) $V_{\rm OC}$ \cdot b) $J_{\rm SC}$ \cdot c) *FF* and d) *PCE* for different devices.

Figure S3. Water contact angle of **Cz-P**, **Cz-Pyr**, **PV(Cz-DMPA)** films on a glass substrate.

Figure S4 SEM image of perovskite. Scale bar: 500 nm

Figure S5 SCLC measurement of device based on spiro-OMeTAD.

 $\label{eq:Figure S6 Stability of device based on spiro-OMeTAD} (FTO/SnO_2/Cs_{0.05}FA_{0.85}MA_{0.10}Pb(I_{0.97}Br_{0.03})_3/spiro-OMeTAD/Ag).$

Figure S7 ¹H NMR spectrum of 3,6-Bis[N,N'-di(4-methoxyphenyl)amino]-9-(2chloroethyl)-carbazole (2) in DMSO-d6

Figure S8 ¹³C NMR spectrum of *3,6-Bis[N,N'-di(4-methoxyphenyl)amino]-9-(2-chloroethyl)-carbazole* (2) in DMSO-d6

Figure S9 ¹H NMR spectrum of 3,6-Bis[N,N'-di(4-methoxyphenyl)amino]-9-vinylcarbazole (3) in acetone-d6.

Figure S10 ¹³C NMR spectrum of *3,6-Bis[N,N'-di(4-methoxyphenyl)amino]-9-vinyl-carbazole* (3) in acetone-d6.

Figure S11 SEC chromatogramm of polymer PV(Cz-DMPA).

Table S1 Photovoltaic parameters for devices without IL.

	$V_{\rm OC}$ (V)	$J_{\rm SC}~({\rm mA/cm^2})$	FF (%)	PCE (%)
Spiro-OMeTAD	1.09	25.24	73.81	20.25
Cz-Pyr	1.04	25.27	73.48	19.27
Cz-P	1.03	25.10	72.75	18.75

Table S2 The time constant and amplitude extracted from fitting the TRPL data with biexponential decay equation $[f(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)]$ for devices.

	A_1	$\tau_1(ns)$	A_2	τ_2 (ns)	$\tau_{average}\left(ns\right)$
Perovskite	75.38	21.44	414.33	205.17	201.74
w IL/Spiro-OMeTAD	253.97	16.23	215.85	92.90	79.83
w IL/Cz-Pyr	265.31	9.87	244.72	52.91	45.67
w IL/Cz-P	266.57	13.73	217.77	80.14	68.63