Prediction of high Curie-temperature intrinsic ferromagnetic

semiconductors and quantum anomalous Hall states in XBr₃ (X = Cu, Ag,

Au) monolayers: Supplemental Materials

Xiaojuan Liu¹, Jiayong Zhang², Yao Wang¹, Hairui Bao¹, Yang Qi¹, Zhongqin Yang^{1,3*}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai

200433, China

²Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application,

School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou

215009, China

³ Shanghai Qi Zhi Institute, Shanghai 200030, China

*Corresponding author: Email: <u>zyang@fudan.edu.cn</u>

Table. S1. The total energies per formula unit (in meV) for the monolayer XBr₃ (X = Cu, Ag, Au) with various magnetic structures by using GGA + U functional. The values are relative to the total energy of the FM state of the corresponding monolayer. J_1 , J_2 , and J_3 represent the NN-, NNN-, and TN-coupling constants (in meV) in the Heisenberg model, respectively. The last column gives the magnetic anisotropy energies per X atom (in meV).

	U _{eff}	FM	n-AFM	s-AFM	z-AFM	J_1	J ₂	J ₃	MAE
CuBr ₃	2.1	0	212.949	168.913	98.996	17.68	1.72	0.07	1.578
	3.1	0	224.135	176.636	104.225	18.53	1.77	0.14	1.530
	4.1	0	232.969	182.639	108.345	19.20	1.81	0.21	1.497
	5.1	0	240.569	188.114	113.653	19.69	1.91	0.36	1.478
AgBr ₃	0.8	0	178.723	167.583	77.003	16.83	2.06	-1.94	1.531
	1.3	0	235.553	175.554	84.196	20.43	0.76	-0.80	1.598
	1.8	0	245.426	183.016	89.455	21.19	0.85	-0.73	1.604
	2.3	0	254.564	189.935	94.039	21.90	0.92	-0.69	1.624
AuBr ₃	0.5	0	126.125	91.326	22.358	12.19	-0.39	-1.68	0.386
	1.0	0	140.039	102.493	29.775	13.30	-0.24	-1.63	0.415
	1.5	0	152.603	111.761	38.157	14.14	-0.08	-1.42	0.435

Table. S2. The total spin magnetic moments per unit cell (in μ_B) of the monolayer XBr₃ (X = Cu, Ag, Au) and the local magnetic moments (in μ_B) at X or Br atoms in the pristine (the first values) and 5% tensile strained (the second values) structures.

	Total	X	Br
CuBr ₃	4 / 4	0.58 / 0.55	0.37 / 0.38
AgBr ₃	4 / 4	0.43 / 0.39	0.40 / 0.41
AuBr ₃	4 / 4	0.58 / 0.56	0.36 / 0.36

Table. S3. Magnetic ground states of TMA₃ (TM = transition metal atom and A = F, Cl, Br, I) type monolayer materials with the similar structure of XBr₃ (X = Cu, Ag, Au) based on theoretical calculations and also experimental measurements (in italics). The numbers express the T_c for the FM ground state of the materials. The numbers in bold are our results calculated based on a Heisenberg model. The T_c values we obtained from an Ising model for XBr₃ (X = Cu, Ag, Au) are 238 K, 190 K, and 64 K, respectively. The upper corner numbers represent the corresponding references.

$T_c \setminus TM$									
<u>/K</u>	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Со	Ni	Cu
A	L								
F	-	-	-	416	4507	-	-	-	-
Cl	NM^1	376 ²	$425^{2}(80^{4})$	49 ⁶	6207	-	-	40010 (49711)	7412
Br	NM^1	75 ³	1905	736 (3425)	7007	AFM ⁵	NM ⁹	100 ⁵ (595 ¹¹)	149
Ι	NM^1	90 ³	98 ⁴	956 (4526)	7207	AFM ⁸	-	68211	-
	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag
F	-	-	-	-	-	-	-	-	-
Cl	-	13013	-	AFM ¹⁴	-	14^{15}	NM^{18}	52819	-
Br	NM^1	-	-	AFM ¹⁴	-	1316	NM^{18}	$110^{5}(350^{20})$	118
Ι	NM^1	-	-	2414	FM^8	216 (36017)	NM^{18}	15020	-
	La	Hf	Ta	W	Re	Os	Ir	Pt	Au
F	-	-	-	-	-	-	-	-	-
Cl	-	-	-	-	-	35022	-	20024	-
Br	-	-	-	-	39021	-	-	37520	31
I	-	-	-	AFM ⁸	16521	3523	-	164 ²⁰	-

Fig. S1. Total energy fluctuation of the monolayer CuBr₃ at 100 K (a), AgBr₃ at 70 K (b), and AuBr₃ at 30 K (c) during the AIMD simulations. The insets show the corresponding atomic structures for the three monolayers at the end of the simulations.

Fig. S2. The calculated total DOSs of the XBr_3 (X = Cu, Ag, Au) monolayers in the non-magnetic state.

Fig. S3. Monte Carlo simulations on the magnetization for the (a) $CuBr_3$, (b) $AgBr_3$, and (c) $AuBr_3$ monolayers with different U_{eff} values for the X (Cu, Ag, Au) *d* orbitals. In (a), the HSE06 result is also given. The results for CuBr₃ and AgBr₃ under 5% tensile strain are also displayed in (a) and (b), respectively.

Fig. S4. The calculated partial DOSs of the (a) CuBr₃, (b) AgBr₃, and (c) AuBr₃ monolayers. The small up and down arrows express the spin-up and spin-down states, respectively.

Fig. S5. Band structures of the monolayer XBr_3 (X = Cu, Ag, Au) in FM states with HSE06 functional.

The red (blue) curves represent the spin-up (spin-down) bands.

Fig. S6. Band structures of the monolayer XBr_3 (X = Cu, Ag, Au) in FM states under 5% tensile strain with GGA + U functional. The red (blue) curves represent the spin-up (spin-down) bands. The small up and down arrows express the spin-up and spin-down states, respectively.

REFERENCES

[1] P. Liu, F. Lu, M. Wu, X. Luo, Y. Cheng, X-W. Wang, W. Wang, W-H. Wang, H. Liu and K. Cho,
Electronic structures and band alignments of monolayer metal trihalide semiconductors MX₃, J. Mater.
Chem. C, 2017, 5, 9066-9071.

[2] Y. Zhou, H. Lu, X. Zu and F. Gao, Evidencing the existence of exciting half-metallicity in twodimensional TiCl₃ and VCl₃ sheets, Sci. Rep., 2016, **6**, 19407.

[3] J. Geng, I. N. Chan, H. Ai, K. H. Lo, Y. Kawazoe, K. W. Ng and H. Pan, Magnetic and electronic properties of 2D TiX₃ (X = F, Cl, Br and I), Phys. Chem. Chem. Phys., 2020, 22, 17632-17638.

[4] J. He, S. Ma, P. Lyu and P. Nachtigall, Unusual Dirac half metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers, J. Mater. Chem. C, 2016, 4, 2518-2526.

[5] J. Sun, X. Zhong, W. Cui, J. Shi, J. Hao, M. Xu and Y. Li, The intrinsic magnetism, quantum

anomalous Hall effect and Curie temperature in 2D transition metal trihalides, Phys. Chem. Chem. Phys., 2020, **22**, 24292-2436.

[6] W. B. Zhang, Q. Qu, P. Zhu and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C, 2015, **3**, 12457-12468.

[7] Q. Sun and N. Kioussis, Prediction of manganese trihalides as two-dimensional Dirac half-metals, Phys. Rev. B, 2018 **97**, 094408.

[8] T. Liu, N. Zhou, X. Li, G. Zhu, X. Wei and J. Cao, Prediction of colossal magnetocrystanlline anisotropy for transition metal triiodides, J. Phys, Condens. Matter, 2019, **31**, 295801.

[9] S. S. Li, Y. P. Wang, S. J. Hu, D. Chen, C. W. Zhang and S. S. Yan, Robust half-metallicity in transition metal tribromide nanowires, Nanoscale, 2018, **10**, 15545-15552.

[10] J. He, X. Li, P. Lyu and P. Nachtigall, Near-room-temperature Chern insulator and Dirac spingapless semiconductor: nickel chloride monolayer, Nanoscale, 2017, **9**, 2246-2252.

[11] Z. Li, B. Zhou and C. Luan, Strain-tunable magnetic anisotropy in two-dimensional Dirac halfmetals: nickel trihalides, RSC Adv., 2019, **9**, 35614-35623.

[12] L. Liu, Z. Lin, J. Hu and X. Zhang, Full quantum search for high T_c two-dimensional van der Waals ferromagnetic semiconductors, Nanoscale, 2021, **13**, 8137-8145.

[13] Q. Huang, Y. Z. Huang, Q. R. Zheng and G. Su, Half-metallicity of monolayer transition metal halide zirconium trichloride, J. U. Chin. Acad. Sci., 2018, 35, 297-301.

[14] J. Y. Zhang, B. Zhao, C. Ma and Z. Q. Yang, Bipolar ferromagnetic semiconductors and dopingtuned room-temperature half-metallicity in monolayer MoX₃ (X =Cl, Br, I): An HSE06 study, Phys. Rev. B, 2021, **103**. 075433. [15] S. Sarikurt, Y. Kadioglu, F. Ersan, E. Vatansever, O.Ü. Aktürk, Y. Yüksel, Ü. Akıncı and E. Aktürk, Electronic and magnetic properties of monolayer α-RuCl₃: a first-principles and Monte Carlo study, Phys. Chem. Chem. Phys., 2018, 20, 997-1004.

[16] F. Ersan, E. Vatansever, S. Sarikurt, Y. Yüksel, Y. Kadioglu, H. D. Ozaydin, O. Ü. Aktürk, Ü. Akinci and E. Aktürk, Exploring the electronic and magnetic properties of new metal halides from bulk to two-dimensional monolayer: RuX_3 (X = Br, I), J. Magn. Magn. Mater., 2019, 476, 111-119.

[17] C. Huang, J. Zhou, H. Wu, K. Deng, P. Jena and E. J. Kan, Quantum anomalous Hall effect in ferromagnetic transition metal halides, Phys. Rev. B, 2017, **95**, 045113.

[18] Y. Kadioglu, I. Ozdemir, O. Ü. Aktürk, G. Gökoğlu, Ü. Akinci and E. Aktürk, Tuning the electronic structure of RhX_3 (X = Cl, Br, I) nonmagnetic monolayers: effects of charge-injection and external strain, Phys. Chem. Chem. Phys., 2020, **22**, 4561-4573.

[19] Y. P. Wang, S. Li, C. W. Zhang, S. F. Zhang, W. Ji, P. Li and P. Wang, High-temperature Dirac half-metal PdCl₃: A promising candidate for realizing quantum anomalous Hall effect, J. Mater. Chem. C, 2018, 6, 10284-10291.

[20] J-Y. You, Z. Zhang, B. Gu and G. Su, Two-Dimensional Room-Temperature Ferromagnetic Semiconductors with Quantum Anomalous Hall Effect, Phys. Rev. Appl., 2019, 12, 024063.

[21] Q. Sun and N. Kioussis, Intrinsic ferromagnetism and topological properties in two-dimensional rhenium halides, Nanoscale, 2019, **11**, 6101-6107.

[22] X. L. Sheng and B. K. Nikolić, Monolayer of the 5d transition metal trichloride OsCl₃: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions, Phys. Rev. B, 2017, **95**, 201402(R).

[23] B. G. Li, Y. F. Zheng, H. Cui, P. Wang, T. W. Zhou, D. D. Wang, H. Chen and H. K. Yuan, First-

principles investigation of a new 2D magnetic crystal: Ferromagnetic ordering and intrinsic halfmetallicity, J. Chem. Phys., 2020, **152**, 244704.

[24] J-Y. You, C. Chen, Z. Zhen, X-L. Sheng, S. A. Yang and G. Su, Two-dimensional Weyl halfsemimetal and tunable quantum anomalous Hall effect, Phys. Rev. B, 2019, **100**, 064408.

[25] Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao and T. Yu, Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr₃, Nano Lett., 2019, **19**, 3138-3142.

[26] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E.

Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero and X. D. Xu, Layer-

dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 2017, 546,

270-273.