Supporting Information

Ferroelasticity, thermochromism, semi-conductivity, and ferromagnetism in a new layered perovskite: (4-fluorophenethylaminium)₂[CuCl₄]

Ya-Ping Gong, Xiao-Xian Chen, Guo-Zhang Huang, Wei-Xiong Zhang* and Xiao-Ming Chen

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

Compound	1		
Formula		(FPEA) ₂ [CuCl ₄]	
T/K	298(1)	365(1)	415(1)
Phases	RTP	ITP	HTP
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	$P2_{1}/c$	A2/m	Cmce
a/Å	20.0414(5)	20.4140(9)	40.211(5)
$b/{ m \AA}$	7.3061(2)	7.3636(3)	7.3967(3)
c/Å	7.3103(2)	7.3256(2)	7.3999(4)
$eta/^{\circ}$	96.732(2)	100.344(3)	90
$V/Å^3$	1063.03(5)	1083.29(7)	2201.0(3)
Ζ	2	2	4
$ ho_{ m calc}/ m g~cm^{-3}$	1.517	1.489	1.466
μ/mm^{-1}	6.251	6.134	6.038
Reflections collected	3816	3423	5878
Independent reflections	2077	1183	1045
$R_1^{a}/wR_2^{b}\left[I \ge 2\sigma\left(I\right)\right]$	0.0449,0.1234	0.0414,0.1112	0.0978,0.2765
R_1^a/wR_2^b (all data)	0.0481,0.1285	0.0426,0.1138	0.1262,0.3325
GOF	1.045	1.120	1.082
CCDC number	2130391	2130394	2130395

 Table S1. Crystal data and structure refinement parameters for 1 at RTP, ITP, and HTP.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, {}^{b}wR_{2} = \{\sum w[(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{o})^{2}]^{2}\}^{1/2}$

(FPEA) ₂ [CuCl ₄]						
	Cu1–Cl1	2.2866(6)	Cu1–Cl1C	2.8963(6)		
	Cu1–Cl1A	2.2866(6)	Cu1–Cl2	2.2978(7)		
	Cu1–Cl2A	2.2977(7)	Cl1–Cu1B	2.8963(6)		
	∠Cl1–Cu1–Cl1A	180	∠Cl1A–Cu1–Cl1B	89.931(5)		
	∠Cl1–Cu1–Cl1B	90.068(5)	∠Cl1A–Cu1–Cl1C	90.069(5)		
RTP	∠Cl1C–Cu1–Cl1B	180	∠Cl1–Cu1–Cl1C	89.932(5)		
	∠Cl1–Cu1–Cl2A	90.10(3)	∠Cl2A–Cu1–Cl1C	88.36(2)		
	∠Cl2A–Cu1–Cl1B	91.64(2)	∠Cl2–Cu1–Cl1C	91.64(2)		
	∠Cl2–Cu1–Cl1B	88.36(2)	∠Cl1A–Cu1–Cl2	90.10(3)		
	∠Cl2A–Cu1–Cl2	180				
	A) 1- <i>x</i> , 1- <i>y</i> , - <i>z</i> ; B) 1- <i>x</i> , -1/2+ <i>y</i> , 1/2- <i>z</i> ;; C) + <i>x</i> , 3/2- <i>y</i> , -1/2+ <i>z</i>					
	Cu1–Cl2A	2.2870(9)	Cu1–Cl2	2.2870(8)		
	Cu1–Cl1B	2.2839(7)	Cu1–Cl1C	2.2839(7)		
	Cu1–Cl1D	2.910(2)	Cu1–C1E	2.910(2)		
	∠Cl2A–Cu1–Cl2	180	∠Cl1D–Cu1–Cl2A	89.83(1)		
	∠Cl1E–Cu1–Cl2	89.83(1)	∠Cl1–Cu1–Cl2	90.43(17)		
	∠Cl1–Cu1–Cl2A	89.57(17)	∠Cl1E–Cu1–Cl2A	90.17(1)		
ITP	∠Cl1D–Cu1–Cl2	90.17(1)	∠Cl1A–Cu1–Cl2A	90.43(17)		
	∠Cl1A–Cu1–Cl2	89.57(17)	∠Cl1D–Cu1–Cl1	90.25(4)		
	∠Cl1A–Cu1–Cl1	180	∠Cl1E–Cu1–Cl1A	90.25(4)		
	∠Cl1D–Cu1–Cl1A	89.75(4)	∠Cl1D–Cu1–Cl1E	180		
	∠Cl1E–Cu1–Cl1	89.75(4)				
	A) 1-x, 1-y, 1-z; B) 1-x, +y, 1-z; C) +x, 1-y, +z; D) 1-x, 1/2+y, 3/2-z; E)					
	1-x, 1/2-y, -1/2+z.					
	Cu1–Cl2	2.283(4)	Cu1–Cl2A	2.283(4)		
НТР	Cu1–Cl1B	2.953(2)	Cu1–Cl1	2.278(2)		
	Cu1–Cl1A	2.278(2)	Cl1–Cu1C	2.953(2)		
	∠Cl2A–Cu1–Cl2	180	∠Cl1A–Cu1–Cl2A	90		
	∠Cl1A–Cu1–Cl2	90	∠Cl1–Cu1–Cl2A	90		
	∠Cl1–Cu1–Cl2	90	∠Cl1–Cu1–Cl1A	180		
	A) $1-x$, $1-y$, $1-z$; B) $+x$, $-1/2+y$, $1/2-z$; C) $+x$, $3/2-y$, $-1/2+z$.					

Table S2. Selected bond lengths (Å) and bond angles (°) for 1 at RTP, ITP, and HTP.

	D–H···A	<i>d</i> (D–H)	<i>d</i> (H···A)	< DHA	<i>d</i> (D····A)
RTP	N1–H1A····Cl1	0.89	2.39	170.4	3.273(3)
	N1–H1B····Cl2A	0.89	2.50	165.9	3.370(3)
	N1–H1C····Cl1B	0.89	2.65	133.0	3.317(3)
	N1–H1C····Cl2C	0.89	2.80	142.4	3.548(3)
	A) $1-x, -1/2+y, 1/2-z; B$) +x, $3/2-y, 1/2+z; C$) $1-x, 1-y, 1-z.$				
ITP	N1–H1A····Cl1A	0.89	2.64	133.5	3.313(12)
	N1–H1A····Cl1B	0.89	2.76	123.3	3.330(12)
	N1-H1B…Cl1C	0.89	2.51	172.7	3.394(15)
	N1–H1B····Cl2D	0.89	2.53	168.7	3.407(16)
	N1A-H1C…Cl1E	0.89	2.77	129.8	3.414(14)
	A) +x, 1-y, -1+z; B) 1-x, 1/2+y, 1/2-z; C) 1-x, 1-y, 1-z; D) +x, 1/2+y, -1/2+z; E)				
	+x, 1/2-y, -1/2+z.				
НТР	N1–H1A…Cl1	0.89	2.89	113.96	3.356
	N1–H1A…Cl1A	0.89	2.89	119.01	3.414
	N1–H1B····Cl1B	0.89	2.53	147.28	3.315
	A) $x, y+1/2, -z+1/2;$ B) $-x+1, -y+3/2, z+1/2$				

 Table S3. N–H···Cl hydrogen bonds of 1 at RTP, ITP, and HTP.

<i>k</i> -point	L-CB	H-VB
Z (0.000, 0.000, 0.500)	2.21975	-0.30798
G (0.000, 0.000, 0.000)	2.39111	-0.00032
Y (0.000, 0.500, 0.000)	2.24141	-0.27762
A (-0.500, 0.500, 0.000)	2.24146	-0.27749
B (-0.500, 0.000, 0.000)	2.39114	0
D (-0.500, 0.000, 0.500)	2.21968	-0.30906
E (-0.500, 0.500, 0.500)	2.37831	-0.10966
C (0.000, 0.500, 0.500)	2.37829	-0.10965

Table S4. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of **1**.

Figure S1. The experimental PXRD pattern of the as-synthesized powder sample (red) and the simulated PXRD pattern (black) based on the single-crystal structure at room-temperature; (b) Variable-temperature PXRD patterns of **1**.

Figure S2. Thermogravimetric analysis (TGA) curve of 1.

Figure S3. The total entropy changes (ΔS) of phase transitions in the heating process.

Figure S4. The structures of 1 in RTP, ITP, and HTP viewed along the *b* axis.

Figure S5. The structural parameters of inorganic layers in RTP, ITP, and HTP.

Figure S6. Morphology of a single crystal and its measured PXRD pattern showing that the normal of the largest exposed crystal plane is the *a* axis.

Figure S7. The extrapolated optical band gaps for RTP, ITP, and HTP.

Figure S8. Temperature-dependent conductivity of $(PEA)_2[CuCl_4]$. Inset: blue line indicates fitting of the data to the Arrhenius equation, yielding an average value for E_a of 0.428 eV.

Figure S9. Distance between adjacent inorganic layers of 1 (a) and (PEA)₂[CuCl₄] (b).

Figure S10. Temperature dependence of $\chi_m T$ measured in a heating-cooling cycle during 340-400 K.

Figure S11. The partial and total density of states of 1.

Computational Method

The single-crystal structure of $(FPEA)_2[CuCl_4]$ at 298 K was used for the theoretical calculations. The electron structure calculations and optical properties were performed on the CASTEP code in the Material Studio package,^{S1-S2} a total energy package based on plane-wave pseudopotential method using density functional theory (DFT). The generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof for solids (PBEsol) was used for the exchange-correlation energy.^{S3-S4} The following valence-electron configurations were considered in the computation: Cu-3d¹⁰4s¹, Cl-3s²3p⁵, F-2s²2p⁵, C-2s²2p², N-2s²2p³, H-1s¹. The numbers of plane waves include in the basis sets were determined by a cut-off energy of 850 eV. The numerical integration of the Brillouin zone was performed using a Monkhorst-Pack *k*-point sampling of $1 \times 2 \times 2$.

The calculation of the spontaneous strain

For the present *mmm*F2/*m* species of 1,^{S5} as the cell setting of orthorhombic lattice is different from the monoclinic one, a necessary conversion matrix, (0.5 0 –0.5 0 1 0 0 0 1), was applied for the cell of HTP to match with the monoclinic cell of ITP, giving a converted cell parameters for HTP: $a_0 = 20.443$ Å, $b_0 = 7.397$ Å, $c_0 = 7.400$ Å, $\beta_0 = 100.43^\circ$. Based on geometric relationship, new monoclinic lattice should be:

$$a_0 = \sqrt{\left(\frac{1}{2}a\right)^2 + \left(\frac{1}{2}c\right)^2}$$
$$b_0 = b$$

 $c_0 = c$

Then the spontaneous strain tensor is give as:⁶

$$\varepsilon_{ij} = \begin{bmatrix} 1 - \frac{a\sin\beta}{a_0\sin\beta_0} & 0 & \frac{1}{2} \left(\frac{c\cos\beta}{c_0\sin\beta_0} - \frac{a\cos\beta}{a\sin\beta_0}\right) \\ 0 & 1 - \frac{b}{b_0} & 0 \\ \frac{1}{2} \left(\frac{c\cos\beta}{c_0\sin\beta_0} - \frac{a\cos\beta}{a\sin\beta_0}\right) & 0 & 1 - \frac{c}{c_0} \\ \varepsilon_{ss} = \sqrt{\sum_{i,j} \varepsilon_{ij}^2} = 0.011 \end{bmatrix}$$

In the equation, a, b, c and β refer to the cell parameters of low-symmetry form ITP, and a_0 , b_0 and c_0 are the converted triclinic cell parameters of high-symmetry form HTP.

Figure S12. The orthorhombic cell (red) of HTP converted to monoclinic cell (blue) for comparison with the monoclinic unit cell of ITP.

References

- [S1] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, *Int. J. Quantum Chem.*, 2000, 77, 895-910.
- [S2] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. J. Payne, *Phys-Condens Mat.*, 2002, 14, 2717-2744.
- [S3] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
- [S4] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. *Kristallogr.*, 2005, 220, 567-570.
- [S5] K. Aizu, J. Phys. Soc. Jpn., 1969, 27, 387-396.
- [S6] K. Aizu, J. Phys. Soc. Jpn., 1970, 28, 706-716.