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1. General Information

All the reagents were received from commercial sources and used without further
purification. 'H NMR and 3C NMR spectra were measured by Bruker Advanced II
(400 MHz) spectrometers or MERCURYVX300. Differential scanning calorimetry
(DSC) was performed on a NETZSCH DSC 200 PC and Thermogravimetric analysis
(TGA) was undertaken with a NETZSCH STA 449C instrument. Cyclic voltammetry
(CV) was carried out in nitrogen-purged trichloromethane or N, N-Dimethylformamide
at room temperature with a CHI voltammetric analyzer. Tetrabutylammonium
hexafluorophosphate (TBAPF¢) (0.1 M) is used as the supporting electrolyte. The
conventional three-electrode configuration consists of a platinum working electrode, a
platinum wire auxiliary electrode, and an Ag wire pseudo-reference electrode with

ferrocenium-ferrocene (Fc*/Fc) as the internal standard.

2. Theoretical Calculation

Ground state structures and FMOs were obtained by B3LYP density functional
method with basis set def2-SVP. The dispersion correction was conducted by Grimme's
D3 version with BJ damping function.!? Time-dependent DFT with PBEO functional
and basis set def2-SVP were performed to further analysis of the excited states with the
optimized ground state structures. All the above calculations were carried out with the

Gaussian16 program.

3. Photophysical Characterization

Absorption spectra were characterized by a UV-vis-NIR spectrophotometer (UV-
1650 PC or UV-2700, Shimadzu). Photoluminescence (PL) spectra, photoluminescence
quantum efficiencies (®prs), and phosphorescence spectra were characterized by a
spectrofluorimeter (FluoroMax-P, Horiba Jobin Yvon Inc. or F-4600, Hitachi Inc.).
Phosphorescence spectra of toluene were measured at 77 K (the liquid nitrogen
temperature) by these spectrofluorometers equipped with a microsecond flash lamp as

the pulsed excitation source. Time-resolved PL (PL decay curves) was measured by



monitoring the decay of the intensity at the PL peak wavelength using the time-
correlated single-photon counting fluorescence lifetime system FLLS920 of Edinburgh
Instruments using a picosecond pulsed UV-LASTER (LASTER377) as the excitation
source. The samples were placed in a vacuum cryostat chamber with temperature
control. CD spectra were performed by Jasco-810 spectropolarimeter (Jasco, Easton,
MD, USA). CPL spectra were performed by a JASCO CPL-300 spectrometer.

The rate constants were calculated according to the reported literature* with the
assumption that kpisc >> k;rtkn1, Where kpisc, k1 and k.1 represented the rate
constants of the RISC process, the radiative decay and non-radiative decay from T} to
Sy states, respectively. The rate constant of radiative decay from S, to Sy states (4;s),
non-radiative decay (k. s), reverse intersystem crossing (kgisc) and intersystem crossing
(kisc) could be obtained via equations 1-4 as follows:
ks = Dok, + Dyky (1)
ks = (1 - PpL)lrs/ e (2)
krisc = koka@pr/k: s 3)
kisc = kpka®@d/kriscPp 4)

where k, and k4 represented the decay rate constants for prompt and delayed
fluorescence, @p and @4 represented quantum yields for the prompt and delayed

fluorescence COl’l’lpOl’lel’ltS.



4. Synthetic and Characterization
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Scheme S1. The synthesis procedure of PXZ-PDMLM, FAC-PDMLM, PXZ-BP and FAC-BP.

Synthesis of ((4-(10H-phenoxazin-10-yl)phenyl)(4-fluorophenyl)methanone (PXZ-

BP-F) was according to the reported literature.?

Synthesis of (4-(10H-spiro[acridine-9,9'-fluoren]-10-yl)phenyl)(4-
fluorophenyl)methanone (FAC-BP-F). A mixture of 10H-spiro[acridine-9,9'-fluorene]
(3.31 g, 10.0 mmol), bis(4-fluorophenyl)methanone (2.73 g, 12.5 mmol) and ~-BuOK
(1.12 g, 10.0 mmol) in 20 mL of dry DMF in a 100 mL round bottle was refluxed for
24 h under argon. After cooling down to room temperature, the reaction was quenched
by cold water and then extracted with dichloromethane for three times. The combined
organic extracts were dried over Na,SO,4 and concentrated by rotary evaporation. The
crude product was purified by column chromatography on silica gel to afford bright
yellow powder (3.32 g, 62% yield). '"H NMR (400 MHz, CD,Cl,) & (ppm): 8.05 (m,
2H), 7.91 (m, 2H), 7.76 (m, 2H), 7.59 (m, 2H), 7.33 (m, 4H), 7.20 (m, 4H), 6.88 (m,
2H), 6.51 (m, 2H), 6.32 (m, 4H). '*C NMR (100 MHz, CD,Cl,) & (ppm): 156.4, 144.9,



140.9, 139.3, 137.6, 132.7, 131.4, 128.4, 127.8, 127.6, 127.3, 125.5, 124.9, 120.8,
120.1, 115.7, 115.5, 114.7.

Synthesis of PXZ-PDMLM. A mixture of PXZ-BP-F (1.14 g, 2.99 mmol), (R)-2,6-
dimethylhept-5-en-1-ol (0.78 g, 5.5 mmol), and -BuOK (0.56 g, 5.0 mmol) in 10 mL
of dry DMF in a 50 mL round bottle was refluxed for 24 h under argon. After cooling
down to room temperature, the reaction was quenched by cold water and then extracted
with dichloromethane for three times. The combined organic extracts were dried over
Na,SO,4 and concentrated by rotary evaporation. The crude product was purified by
column chromatography on silica gel to afford bright yellow powder (0.66 g, 42%
yield). 'H NMR (400 MHz, CD,Cl,) 6 (ppm): 7.89 (d, J= 8.0 Hz, 2H), 7.79 (d, /= 8.8
Hz, 2H), 7.40 (d, J= 8.4 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.59 (m, 6H), 5.94 (m, 2H),
5.04 (m, 1H), 4.03 (m, 2H), 1.94 (m, 1H), 1.64 (d, /= 5.6 Hz, 2H), 1.61 (m, 2H), 1.18
(m, 3H), 0.90 (d, J = 6.4 Hz, 3H), 0.80 (m, 3H).13C NMR (100 MHz, CD,Cl,) 8 (ppm):
163.2, 144.0, 142.2, 138.4, 133.9, 132.5, 132.4, 130.6, 124.6, 123.3, 121.6, 1154,
114.1, 113.9, 113.4, 66.8, 37.1, 35.9, 29.5, 25.4, 19.3, 17.3. HRMS m/z calcd for
C;5H36NO3;" (M + H)* 518.2690, found 518.2683.

Synthesis of FAC-PDMLM. A mixture of FAC-BP-F (1.59 g, 3.00 mmol), (R)-2,6-
dimethylhept-5-en-1-ol (0.78 g 5.5 mmol), and ~BuOK (0.56 g, 5.0 mmol) in 10 mL
of dry DMF in a 50 mL round bottle was refluxed for 24 h under argon. After cooling
down to room temperature, the reaction was quenched by cold water and then extracted
with dichloromethane for three times. The combined organic extracts were dried over
Na,SO,4 and concentrated by rotary evaporation. The crude product was purified by
column chromatography on silica gel to afford white powder (1.12 g, 56% yield). 'H
NMR (400 MHz, CD,Cl,) & (ppm): 8.02 (m, 2H), 7.86 (m, 2H), 7.76 (m, 2H), 7.56 (d,
J=8.4 Hz, 2H), 7.34 (m, 4H), 7.21 (m, 2H), 6.96 (m, 2H), 6.88 (m, 2H), 6.51 (m, 2H),
6.33 (m, 4H), 5.05 (m, 1H), 4.05 (m, 2H), 1.95 (m, 2H), 1.81 (m, 1H), 1.61 (s, 3H),
1.54 (s, 2H), 1.19 (s, 3H), 0.91 (d, J = 6.4 Hz, 3H), 0.79 (m, 2H). 13C NMR (100 MHz,
CD,Cl,) & (ppm): 156.5, 141.0, 139.3, 132.5, 132.5, 131.2, 128.4, 127.7, 127.6, 127.3,



125.5,124.9, 120.7, 120.1, 114.7, 114.2, 37.1, 36.0, 35.2, 29.5, 25.4, 19.3. HRMS m/z
calcd for C4gH44NO," (M + H)* 666.3367, found 666.3358.

Synthesis of PXZ-BP. A mixture of (4-fluorophenyl)(phenyl)methanone (0.40 g, 2.0
mmol), 10H-phenoxazine (0.46 g, 2.5 mmol), and ~-BuOK (0.28 g, 2.5 mmol) in 10 mL
of dry DMF in a 50 mL round bottle was refluxed for 24 h under argon. After cooling
down to room temperature, the reaction was quenched by cold water and then extracted
with dichloromethane for three times. The combined organic extracts were dried over
Na,SO,4 and concentrated by rotary evaporation. The crude product was purified by
column chromatography on silica gel to afford bright yellow powder (0.44 g, 60%
yield). 'H NMR (400 MHz, CDCl;) & (ppm): 8.04 (d, J= 8.4 Hz, 2H), 7.87 (d, J = 6.8
Hz, 2H), 7.50 (m, 1H), 6.72-6.63 (m, 6H), 6.01-5.98 (m, 1H). *C NMR (100 MHz,
CDCl) o (ppm): 144.0, 143.0, 137.4, 137.1, 133.8, 132.8, 130.8, 130.0, 128.5, 123.3,
121.8, 115.7, 113.4.

Synthesis of FAC-BP. A mixture of (4-fluorophenyl)(phenyl)methanone (0.40 g, 2.0
mmol), 10H-spiro[acridine-9,9'-fluorene] (0.83 g, 2.5 mmol), and ~BuOK (0.28 g, 2.5
mmol) in 10 mL of dry DMF in a 50 mL round bottle was refluxed for 24 h under argon.
After cooling down to room temperature, the reaction was quenched by cold water and
then extracted with dichloromethane for three times. The combined organic extracts
were dried over Na,SO, and concentrated by rotary evaporation. The crude product was
purified by column chromatography on silica gel to afford yellow powder (0.66 g, 65%
yield). '"H NMR (400 MHz, CDCl3) 6 (ppm): 8.16 (d, J = 8.4 Hz, 2H), 7.94 (m, 2H),
7.80 (m, 2H), 7.66 (m, 3H), 7.58 (m, 2H), 7.41 (m, 4H), 7.28 (m, 2H), 6.95 (m, 2H),
6.60 (m, 2H). 6.40 (m, 4H). 3*C NMR (100 MHz, CDCl5) & (ppm): 156.4, 145.1, 140.8,
139.3, 132.9, 131.4, 130.1, 128.5, 128.4, 127.7, 127.3, 125.8, 121.0, 120.0.

Preparation of TADFES5CB systems. TADF emitter (PXZ-PDMLM or FAC-

PDMLM) and 5CB were dissolved in dichloromethane. Then the mixture was heated



and stirred at 50 °C for 48 h to remove solvent.
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Figure S2. 3C NMR spectrum of FAC-BP-F (100MHz, CD,Cl, + TMS, 300K).
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Figure S3. 'H NMR spectrum of PXZ-PDMLM (400MHz, CD,Cl, + TMS, 300K).
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Figure S4. 3C NMR spectrum of PXZ-PDMLM (100MHz, CD,Cl, + TMS, 300K).
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Figure S5. 'H NMR spectrum of FAC-PDMLM (400MHz, CD,Cl, + TMS, 300K).
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Figure S6. 3C NMR spectrum of FAC-PDMLM (100MHz, CD,Cl, + TMS, 300K).
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Figure S8. 3C NMR spectrum of PXZ-BP (100MHz, CDCl; + TMS, 300K).
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Figure S9. 'H NMR spectrum of FAC-BP (400MHz, CDCl; + TMS, 300K).
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Figure S10. 3C NMR spectrum of FAC-BP (100MHz, CDCl; + TMS, 300K).
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5. Supplementary Figures

PXZ-PDMLM

——FAC-PDMLM

5CB

1 1 1 1

0.0 02 0.4

—l
0.6

0.8 1.0 12 14
Potential vs. Fc/Fe (V)

1.6 18

Figure S11. Cyclic voltammograms of PXZ-PDMLM, FAC-PDMLM and 5CB.
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Figure S12. TGA traces of PXZ-PDMLM, FAC-PDMLM and doping in 5CB at a ratio of 1 wt%,

3 wt% and 5 wt% recorded at a heating rate of 10 °C/min.
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Figure S13. Normalized fluorescence
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PDMLM and PXZ-PDMLM.
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Figure S14. Normalized fluorescence and phosphorescence spectra at 77 K of FAC-PDMLM and

PXZ-PDMLM.
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Figure S15. Fluorescence spectra of FAC-PDMLM and PXZ-PDMLM in THF/water mixtures with

different water fractions (fy, = 0%, 20%, 40%, 60%, 80%, 90% and 99%).
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Figure S17. CPL measurement of 3 wt% and 5 wt% of PXZ-PDMLM € 5CB from 5 to 15 °C.
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Figure S18. CPL measurement of 3 wt% and 5 wt% of FAC-PDMLM € 5CB from 5 to 15 °C.
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Table S1. CPL data of FAC-PDMLM € 5CB systems.

Chiral TADF Ratios (wt%) Temperature (°C) Zlum (1073) Helical pitch (um)

5 -9.3 10.4
3 10 12.3 9.9
15 394 9.6
FAC-PDMLM
5 62.3 10.0
5 10 72.6 10.1
15 12.4 10.6

Table S2. CPL data of PXZ-PDMLM € 5CB systems.

Chiral TADF Ratios (Wt%) Temperature (°C) Zum (1073)  Helical pitch (um)

5 -17.4 11.7
3 10 -54.5 11.1
15 —8.1 11.9
PXZ-PDMLM
5 —8.6 4.6
5 10 —4.1 52

15 -1.2 53




Figure S20. POM images of 3 wt% PXZ-PDMLMES5CB (above) and FAC-PDMLM € 5CB

(underneath) from 5 to 15 °C.

Figure S21. POM images of 5 wt% PXZ-PDMLM&E5CB (above) and FAC-PDMLM € 5CB

(underneath) from 5 to 15 °C.
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Figure S22. CD spectra in FAC-BP, FAC-BPe5CB, PXZ-BP and PXZ-BP€E5CB.
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Figure S23. CPL spectra in 5CB, FAC-BP, FAC-BPe5CB, PXZ-BP and PXZ-BPe5CB.
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