Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information for:

High Efficiency Red Photoluminescence Achieved by Antimony Doping in Organic-Inorganic Hybrid Halide (C₁₁H₂₄N₂)₂[InBr₆][InBr₄]

Jiawei Lin,^a Zhongnan Guo,^{*}a Niu Sun,^a Kunjie Liu,^b Xin Chen,^c Jing Zhao,^b Quanlin Liu,^b and Wenxia

Yuan,*a

a Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China

b The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of

Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083,

China

c. Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State
 Chemistry, University of Science and Technology Beijing, Beijing 100083, China

CONTENTS

Table S1. Crystal data a	and structure refinement of	(C ₁₁ H ₂₄ N ₂) ₂ [InBr ₆][InBr ₄] at 300 K.	S4
Table S2. Atomic coor	dinates (× 10^4) and equival	lent isotropic displacement parameters	$(Å^2 \times 10^3)$ for
$(C_{11}H_{24}N_2)_2[InBr_6][InBr_6]$	r ₄] at 300 K with estimated	standard deviations in parentheses.	S5
Table S3. Anisotropic	lisplacement parameters (Å	$Å^2 \times 10^3$) for (C ₁₁ H ₂₄ N ₂) ₂ [InBr ₆][InBr ₄]	at 300 K with
estimated standard devia	ations in parentheses.		S6
Table S4. Crystal data	and structure refinement	of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:xSb^{3+}$ (x	= 0, 0.05 and
0.10)	at	150	K.
S8			
Table S5. Atomic coor	dinates (× 10^4) and equival	lent isotropic displacement parameters	$(Å^2 \times 10^3)$ for
$(C_{11}H_{24}N_2)_2[InBr_6][InBr_6]$	r ₄] at 150 K with estimated	standard deviations in parentheses.	S9
Table S6. Anisotropic	lisplacement parameters (Å	$Å^2 \times 10^3$) for (C ₁₁ H ₂₄ N ₂) ₂ [InBr ₆][InBr ₄]	at 150 K with
estimated standard devia	ations in parentheses.		S10
Table S7. Atomic coor	dinates (× 10^4) and equival	lent isotropic displacement parameters	$(Å^2 \times 10^3)$ for
$(C_{11}H_{24}N_2)_2[In_{0.9}Sb_{0.1}B_1]$; ₆][InBr ₄] at 150 K with est	imated standard deviations in parenthese	es. S11
Table S8. Anisotropic	lisplacement parameters (A	$Å^2 \times 10^3$) for $(C_{11}H_{24}N_2)_2[In_{0.9}Sb_{0.1}Br_6]$	[InBr ₄] at 150
K with estimated standa	rd deviations in parenthese	·S.	S13
Table S9. Atomic coor	dinates (\times 10 ⁴) and equival	lent isotropic displacement parameters	$(Å^2 \times 10^3)$ for
$(C_{11}H_{24}N_2)_2[In_{0.8}Sb_{0.2}B_1]$	$[_{6}]$ [InBr ₄] at 300 K with est	timated standard deviations in parenthes	ses. S14
Table S10. Anisotropic	e displacement parameters	$(Å^2 \times 10^3)$ for $(C_{11}H_{24}N_2)_2[In_{0.8}Sb_{0.2}H_2]$	3r ₆] [InBr ₄] at

Table S11. Distortion degree of the $[In(Sb)Br_6]^{3-}$ octahedron and $[In(Sb)Br_4]^{-}$ tetrahedron for $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:xSb^{3+}$ (x = 0, 0.05 and 0.10) at 150 K.S18

S16

300.0 K with estimated standard deviations in parentheses.

Figure S1. PXRD patterns of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ for simulation based on the singe-crystal refinements (blue), experimental data of fresh synthesized samples (black), and those in air for 3 months (red). S18

Figure S2. Emission spectra at different excitation wavelength of (a) $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$, and (e) $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$:5%Sb³⁺. (b) Photoluminescent spectra of 1-(crylohexylmethyl)piperazine. Normalized (c) excitation and (d) emission spectra of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$: xSb^{3+} . (f) Integral PL intensity of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$: xSb^{3+} . S19

Figure S3. PLQY of (a) $(C_{11}H_{24}N_2)_2$ [InBr₆][InBr₄], and (b) $(C_{11}H_{24}N_2)_2$ [InBr₆][InBr₄]:5%Sb³⁺. S19

Figure S4. Band gap value of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ obtained from Tauc plot. S20

Figure S5. Comparison of the PL spectra of the as-prepared $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$:5%Sb³⁺and the one exposed in the air for 3 months. S20

Figure S6. Time-resolved decay curves of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:xSb^{3+}$ by single exponential fit.

S21

(a)-(f) correspond
$$x = 0, 0.005, 0.01, 0.05, 0.10, 0.20$$
 in turn.

Figure S7. The structure mode used for calculating the Sb-doped $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$. S21

Empirical formula	$(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$
Formula weight	1397.38
Temperature	300 K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pbca
Unit cell dimensions	$a = 15.7695(17)$ Å, $a = 90^{\circ}$
	$b = 15.8071(15)$ Å, $\beta = 90^{\circ}$
	$c = 31.957(13)$ Å, $\gamma = 90^{\circ}$
Volume	7965.8(15) Å ³
Ζ	8
Density (calculated)	2.330 g/cm ³
Absorption coefficient	11.210 mm ⁻¹
<i>F</i> (000)	5248
Crystal size	$0.18 \times 0.15 \times 0.08 \text{ mm}^3$
θ range for data collection	2.225 to 26.458°
Index ranges	$-19 \leq h \leq 19$
	$-19 \leq k \leq 19$
	$-40 \leqslant l \leqslant 40$
Reflections collected	71812
Independent reflections	8175 [$R_{\rm int} = 0.0948$]
Completeness	99.8%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8175/0/343
Goodness-of-fit	1.014
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_{\rm obs} = 0.0558, wR_{\rm obs} = 0.1363$
R indices [all data]	$R_{\rm all} = 0.1015, wR_{\rm all} = 0.1628$
Largest diff. peak and hole	0.949 and -1.076 e·Å ⁻³

Table S1. Crystal data and structure refinement of $(C_{11}H_{24}N_2)_2$ [InBr₆][InBr₄] at 300 K.

 $\overline{R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR} = \{ \Sigma [w(|F_{o}|^{2} - |F_{c}|^{2})^{2}] / \Sigma [w(|F_{o}|^{4})] \}^{1/2} \text{ and } w = 1 / [\sigma^{2}(F_{o}^{2}) + (0.0795P)^{2} + 25.4742P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2}) / 3$

Label	x	У	Ζ	Occupancy	$U_{\rm eq}$ *
In(1)	3682(1)	7816(1)	4812(1)	1	49(1)
In(2)	3662(1)	4914(1)	7004(1)	1	67(1)
Br(3)	2320(1)	7068(1)	4466(1)	1	54(1)
Br(5)	2549(1)	8676(1)	5278(1)	1	56(1)
Br(4)	3683(1)	6505(1)	5346(1)	1	56(1)
Br(2)	4880(1)	6872(1)	4401(1)	1	56(1)
Br(6)	4955(1)	8493(1)	5230(1)	1	58(1)
Br(1)	3677(1)	8975(1)	4222(1)	1	66(1)
Br(8)	4962(1)	5565(1)	7304(1)	1	80(1)
Br(9)	3506(1)	3390(1)	7165(1)	1	85(1)
Br(7)	3750(2)	5045(2)	6225(1)	1	118(1)
Br(10)	2382(1)	5727(2)	7216(1)	1	134(1)
N(2)	6151(5)	9382(4)	3824(3)	1	51(2)
N(3)	5833(4)	6340(4)	5425(3)	1	52(2)
N(1)	6569(5)	8270(5)	4506(3)	1	57(2)
N(4)	6237(5)	5196(5)	6112(3)	1	59(2)
C(2)	6117(6)	8441(5)	3774(3)	1	54(2)
C(5)	5542(6)	9797(6)	3521(3)	1	58(3)
C(3)	5976(5)	9633(6)	4259(3)	1	50(2)
C(1)	6736(6)	8024(6)	4071(3)	1	57(2)
C(17)	6691(6)	3860(6)	6483(3)	1	57(2)
C(6)	5527(6)	10758(6)	3549(3)	1	55(2)
C(15)	6236(6)	6149(6)	6159(3)	1	60(3)
C(11)	4953(7)	11085(6)	3203(4)	1	70(3)
C(14)	6468(6)	5003(6)	5661(4)	1	59(3)
C(12)	5857(6)	5415(6)	5362(3)	1	56(2)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ at 300 K with estimated standard deviations in parentheses.

C(16)	6842(7)	4803(7)	6408(4)	1	76(3)
C(7)	6405(7)	11136(6)	3504(4)	1	73(3)
C(13)	5627(6)	6564(6)	5861(3)	1	57(2)
C(4)	6603(6)	9206(6)	4558(4)	1	62(3)
C(18)	5895(7)	3654(7)	6731(4)	1	78(3)
C(10)	4889(10)	12062(7)	3222(5)	1	96(4)
C(20)	6562(9)	2345(9)	7029(5)	1	101(5)
C(8)	6350(8)	12103(6)	3537(5)	1	85(4)
C(9)	5729(10)	12464(8)	3218(5)	1	104(5)
C(22)	7469(7)	3499(8)	6721(5)	1	88(4)
C(21)	7347(8)	2545(7)	6790(4)	1	83(4)
C(19)	5807(8)	2705(8)	6789(5)	1	95(4)

 $*U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S3. Anisotropic displacement parameters ($Å^2 \times 10^3$) for $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ at 300 K with estimated standard deviations in parentheses.

Label	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
In(1)	40(1)	52(1)	57(1)	1(1)	1(1)	6(1)
In(2)	67(1)	67(1)	66(1)	4(1)	-9(1)	7(1)
Br(3)	45(1)	59(1)	57(1)	-1(1)	-2(1)	-3(1)
Br(5)	50(1)	53(1)	65(1)	2(1)	5(1)	-4(1)
Br(4)	44(1)	60(1)	66(1)	1(1)	1(1)	16(1)
Br(2)	47(1)	58(1)	64(1)	0(1)	8(1)	-3(1)
Br(6)	47(1)	64(1)	63(1)	-4(1)	1(1)	-6(1)
Br(1)	50(1)	72(1)	76(1)	1(1)	4(1)	24(1)
Br(8)	76(1)	72(1)	94(1)	1(1)	-22(1)	8(1)
Br(9)	89(1)	75(1)	90(1)	-2(1)	6(1)	20(1)
Br(7)	162(2)	126(2)	66(1)	-43(2)	-24(1)	34(1)
Br(10)	71(1)	120(2)	211(2)	24(1)	-32(1)	-74(2)
N(2)	54(4)	47(4)	51(5)	0(3)	5(4)	3(4)

N(3)	43(4)	56(4)	56(6)	0(3)	-2(4)	7(4)
N(1)	42(4)	57(4)	72(6)	-1(3)	4(4)	22(4)
N(4)	55(4)	64(5)	58(6)	-9(4)	-7(4)	7(4)
C(2)	61(5)	50(5)	50(6)	0(4)	2(5)	-3(4)
C(5)	56(5)	54(5)	63(7)	-5(4)	-5(5)	5(5)
C(3)	48(5)	55(5)	48(6)	-1(4)	5(4)	-2(4)
C(1)	59(6)	51(5)	61(7)	4(4)	5(5)	9(5)
C(17)	59(5)	63(6)	50(7)	7(5)	2(5)	1(5)
C(6)	59(5)	57(5)	50(6)	15(4)	-11(5)	-4(5)
C(15)	69(6)	54(5)	56(7)	-1(5)	-4(5)	-12(5)
C(11)	77(7)	66(6)	68(8)	23(5)	-18(6)	-5(6)
C(14)	48(5)	50(5)	80(8)	0(4)	-8(5)	-6(5)
C(12)	58(5)	50(5)	62(7)	-6(4)	-2(5)	-4(5)
C(16)	75(7)	85(7)	68(8)	-9(6)	-20(6)	21(6)
C(7)	74(7)	65(6)	79(9)	-2(5)	2(6)	9(6)
C(13)	57(5)	51(5)	63(7)	1(4)	1(5)	5(5)
C(4)	47(5)	63(6)	75(8)	-9(4)	-7(5)	9(5)
C(18)	71(7)	87(8)	76(9)	26(6)	26(6)	20(6)
C(10)	134(12)	71(7)	83(10)	27(8)	-39(9)	7(7)
C(20)	106(10)	102(10)	95(12)	14(8)	15(9)	40(8)
C(8)	108(10)	53(6)	94(10)	-11(6)	-6(8)	9(6)
C(9)	158(14)	58(7)	97(12)	-6(8)	-25(10)	22(7)
C(22)	63(6)	95(8)	106(11)	5(6)	-13(7)	26(8)
C(21)	85(8)	92(8)	72(9)	33(7)	-14(7)	9(7)

The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}]$.

Table S4. Crystal data and structure refinement of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:xSb^{3+}$ (x = 0, 0.05 and 0.10) at 150 K.

En si si sul famorale		$(C_{11}H_{24}N_2)_2[In_{0.9}Sb_{0.1}Br_6]$	$(C_{11}H_{24}N_2)_2[In_{0.8}Sb_{0.2}Br_6]$
Empirical formula	$(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$	[InBr ₄]	[InBr ₄]
Formula weight	1397.38	1398.07	1398.77
Temperature		150 K	
Wavelength		0.71073 Å	
Crystal system	orthorhombic	orthorhombic	orthorhombic
Space group	Pbca	Pbca	Pbca
Unit cell dimensions	a = 15.6904(5) Å	a = 15.7197(7) Å	a = 15.7544(5) Å
	<i>b</i> = 15.6905(5) Å	<i>b</i> = 15.7070(6) Å	<i>b</i> = 15.6813(5) Å
	c = 31.7718(13) Å	c = 31.7425(14) Å	c = 31.7067(11) Å
Volume	7821.9(5) Å ³	7837.5(6) Å ³	7833.1(4) Å ³
Ζ	8	8	8
Density (calculated)	2.373 g/cm ³	2.370 g/cm ³	2.369 g/cm ³
Absorption coefficient	11.416 mm ⁻¹	11.404 mm ⁻¹	11.420 mm ⁻¹
<i>F</i> (000)	5248	5250	5235
θ range for data collection	1.944 to 26.476°	2.237 to 26.399°	2.238 to 26.403°
Index ranges	$-19 \le h \le 19$	$-19 \le h \le 19$	$-15 \le h \le 19$
	$-19 \le k \le 19$	$-19 \le k \le 19$	$-19 \le k \le 19$
	$-39 \le l \le 39$	$-39 \le l \le 39$	$-39 \le l \le 39$
Reflections collected	104432	74336	80310
Independent reflections	$8050 [R_{int} = 0.0692]$	8015 [$R_{\rm int} = 0.1037$]	$8019 [R_{int} = 0.0945]$
Completeness	99.8%	99.9%	99.8%
Refinement method	F	full-matrix least squares on h	<u>F</u> 2
Data/restraints/parameters	8050/0/343	8015/0/343	8019/0/343
Goodness-of-fit	1.032	1.026	1.020
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_{\rm obs} = 0.0346$	$R_{\rm obs} = 0.0464$	$R_{\rm obs} = 0.0466$
	$wR_{\rm obs} = 0.0786$	$wR_{\rm obs} = 0.0847$	$wR_{\rm obs} = 0.1087$
R indices [all data]	$R_{\rm all} = 0.0480$	$R_{\rm all} = 0.0789$	$R_{\rm all} = 0.0724$
	$wR_{\rm all} = 0.0843$	$wR_{\rm all} = 0.0945$	$wR_{\rm all} = 0.1231$
Largest diff. peak and hole	0.898 and -0.819 e·Å ⁻³	0.654 and -0.663 e·Å ⁻³	1.039 and -0.794 e·Å ⁻³

Label	x	у	Ζ	Occupancy	U _{eq} *
In(1)	3669(1)	2809(1)	4796(1)	1	29(1)
In(2)	6338(1)	10097(1)	2994(1)	1	38(1)
Br(4)	2535(1)	3672(1)	5269(1)	1	32(1)
Br(6)	3672(1)	1489(1)	5331(1)	1	32(1)
Br(5)	2295(1)	2059(1)	4450(1)	1	31(1)
Br(2)	4944(1)	3491(1)	5225(1)	1	33(1)
Br(1)	4885(1)	1873(1)	4386(1)	1	32(1)
Br(3)	3665(1)	3975(1)	4202(1)	1	36(1)
Br(8)	5027(1)	9439(1)	2690(1)	1	42(1)
Br(9)	6514(1)	11631(1)	2833(1)	1	44(1)
Br(10)	6249(1)	9965(1)	3783(1)	1	64(1)
Br(7)	7631(1)	9271(1)	2784(1)	1	76(1)
N(4)	6148(2)	4393(2)	3815(2)	1	30(1)
N(1)	5813(2)	1344(2)	5419(2)	1	30(1)
N(2)	6205(3)	204(3)	6115(2)	1	33(1)
N(3)	6560(3)	3287(3)	4514(2)	1	33(1)
C(16)	5537(3)	4790(3)	3505(2)	1	34(2)
C(12)	6588(3)	4235(3)	4561(2)	1	34(2)
C(14)	5969(3)	4650(3)	4262(2)	1	30(1)
C(3)	5841(3)	400(3)	5363(2)	1	33(2)
C(18)	4946(4)	6104(3)	3186(2)	1	37(2)
C(15)	6124(3)	3441(3)	3774(2)	1	36(2)
C(5)	6808(3)	-198(3)	6434(2)	1	39(2)
C(2)	6198(3)	1150(3)	6169(2)	1	36(2)
C(17)	5513(3)	5762(3)	3538(2)	1	32(2)
C(21)	6320(4)	7134(3)	3554(2)	1	46(2)

Table S5. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ at 150 K with estimated standard deviations in parentheses.

C(1)	5597(3)	1574(3)	5862(2)	1	34(2)
C(6)	6676(3)	-1151(3)	6490(2)	1	35(2)
C(4)	6456(3)	0(3)	5667(2)	1	32(2)
C(13)	6746(3)	3024(3)	4076(2)	1	35(2)
C(20)	5707(4)	7507(4)	3234(2)	1	52(2)
C(22)	6396(3)	6168(3)	3512(2)	1	39(2)
C(7)	5861(3)	-1366(3)	6734(2)	1	41(2)
C(19)	4845(4)	7066(3)	3233(2)	1	48(2)
C(11)	7463(4)	-1519(4)	6712(2)	1	43(2)
C(9)	6566(4)	-2672(4)	7029(2)	1	49(2)
C(8)	5781(4)	-2323(4)	6800(2)	1	50(2)
C(10)	7371(4)	-2467(4)	6788(2)	1	46(2)

 $*U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S6. Anisotropic displacement parameters ($Å^2 \times 10^3$) for $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ at 150 K with estimated standard deviations in parentheses.

Label	U_{11}	U_{22}	U_{33}	U_{12}	<i>U</i> ₁₃	U_{23}
In(1)	25(1)	30(1)	33(1)	0(1)	1(1)	3(1)
In(2)	38(1)	38(1)	38(1)	2(1)	-5(1)	3(1)
Br(4)	29(1)	30(1)	36(1)	1(1)	2(1)	-2(1)
Br(6)	26(1)	33(1)	36(1)	0(1)	0(1)	7(1)
Br(5)	27(1)	33(1)	32(1)	0(1)	-1(1)	-2(1)
Br(2)	28(1)	35(1)	36(1)	-2(1)	0(1)	-3(1)
Br(1)	28(1)	32(1)	36(1)	0(1)	4(1)	-2(1)
Br(3)	30(1)	39(1)	41(1)	1(1)	1(1)	10(1)
Br(8)	41(1)	38(1)	47(1)	0(1)	-10(1)	5(1)
Br(9)	46(1)	41(1)	46(1)	-1(1)	3(1)	9(1)
Br(10)	86(1)	66(1)	38(1)	-25(1)	-15(1)	17(1)
Br(7)	40(1)	67(1)	122(1)	14(1)	-21(1)	-44(1)
N(4)	29(2)	27(2)	34(2)	0(2)	3(2)	-1(2)

N(1)	25(2)	30(2)	36(2)	-1(2)	-2(2)	1(2)
N(2)	30(2)	36(2)	33(2)	-4(2)	-1(2)	3(2)
N(3)	27(2)	33(2)	38(2)	-1(2)	-2(2)	6(2)
C(16)	33(3)	41(3)	30(3)	2(2)	-4(2)	3(2)
C(12)	32(3)	33(3)	36(3)	-3(2)	-2(2)	-2(2)
C(14)	28(2)	34(3)	29(3)	4(2)	0(2)	1(2)
C(3)	34(3)	32(3)	34(3)	-4(2)	-4(2)	-1(2)
C(18)	43(3)	33(3)	36(3)	7(2)	-7(2)	-5(2)
C(15)	44(3)	28(2)	37(3)	-3(2)	4(2)	-1(2)
C(5)	37(3)	46(3)	35(3)	1(2)	-8(2)	3(2)
C(2)	38(3)	35(3)	33(3)	-5(2)	-2(2)	-4(2)
C(17)	30(3)	35(3)	29(3)	4(2)	-1(2)	1(2)
C(21)	59(4)	34(3)	45(3)	-5(3)	-6(3)	-3(2)
C(1)	33(3)	32(3)	37(3)	-2(2)	2(2)	0(2)
C(6)	32(3)	39(3)	33(3)	1(2)	1(2)	0(2)
C(4)	31(3)	31(3)	32(3)	1(2)	1(2)	-5(2)
C(13)	34(3)	31(3)	39(3)	0(2)	3(2)	0(2)
C(20)	74(4)	33(3)	49(4)	1(3)	-3(3)	4(3)
C(22)	39(3)	37(3)	41(3)	1(2)	1(2)	4(2)
C(7)	39(3)	43(3)	41(3)	9(2)	7(2)	6(2)
C(19)	67(4)	39(3)	37(3)	18(3)	-16(3)	-6(3)
C(11)	44(3)	47(3)	38(3)	5(3)	-5(2)	1(3)
C(9)	57(4)	41(3)	50(4)	11(3)	9(3)	17(3)
C(8)	39(3)	49(3)	61(4)	1(3)	13(3)	16(3)
C(10)	44(3)	50(3)	43(3)	13(3)	-4(3)	9(3)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S7. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for $(C_{11}H_{24}N_2)_2[In_{0.9}Sb_{0.1}Br_6][InBr_4]$ at 150 K with estimated standard deviations in parentheses.

Label x y z Occupancy	$U_{ m eq}$ *
-----------------------	---------------

			_	_	
In(1)	1331(1)	2817(1)	4791(1)	0.9	31(1)
Sb(1)	1331(1)	2817(1)	4791(1)	0.1	31(1)
In(2)	1354(1)	-106(1)	7008(1)	1	40(1)
Br(4)	1332(1)	1482(1)	5329(1)	1	34(1)
Br(2)	2459(1)	3679(1)	5269(1)	1	34(1)
Br(6)	56(1)	3495(1)	5226(1)	1	35(1)
Br(3)	2727(1)	2063(1)	4447(1)	1	36(1)
Br(5)	94(1)	1859(1)	4385(1)	1	38(1)
Br(1)	1337(1)	4004(1)	4195(1)	1	42(1)
Br(10)	38(1)	548(1)	7308(1)	1	44(1)
Br(9)	1520(1)	-1646(1)	7164(1)	1	46(1)
Br(7)	1287(1)	44(1)	6220(1)	1	70(1)
Br(8)	2640(1)	708(1)	7234(1)	1	82(1)
N(1)	4191(4)	3664(3)	4578(2)	1	32(2)
N(4)	3846(4)	614(4)	6186(2)	1	34(2)
N(3)	3432(4)	1720(4)	5489(2)	1	36(2)
N(2)	3799(4)	4815(4)	3883(2)	1	32(2)
C(15)	3416(5)	776(4)	5438(2)	1	36(2)
C(13)	3860(5)	1556(4)	6225(2)	1	37(2)
C(16)	4459(5)	212(4)	6493(2)	1	35(2)
C(22)	5063(5)	-1103(5)	6806(3)	1	41(2)
C(6)	3336(5)	6165(5)	3510(2)	1	35(2)
C(18)	3617(5)	-1173(5)	6495(3)	1	41(2)
C(14)	4035(4)	359(4)	5736(2)	1	31(2)
C(12)	3246(5)	1976(4)	5927(2)	1	38(2)
C(17)	4491(5)	-760(4)	6460(2)	1	32(2)
C(5)	3196(5)	5209(5)	3570(2)	1	40(2)
C(4)	4163(5)	4607(4)	4644(2)	1	34(2)
C(19)	3695(5)	-2139(5)	6447(3)	1	46(2)
C(1)	4413(5)	3442(5)	4136(2)	1	38(2)

C(2)	3815(5)	3860(4)	3828(2)	1	37(2)
C(11)	4139(5)	6378(5)	3268(3)	1	45(2)
C(3)	3543(5)	5006(4)	4333(2)	1	34(2)
C(20)	4313(6)	-2504(5)	6763(3)	1	52(2)
C(21)	5169(6)	-2059(5)	6763(3)	1	49(2)
C(7)	2549(5)	6522(5)	3281(3)	1	44(2)
C(8)	2639(5)	7481(5)	3213(3)	1	48(2)
C(10)	4220(5)	7336(5)	3202(3)	1	52(2)
C(9)	3440(6)	7691(6)	2978(3)	1	55(2)

 $*U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S8. Anisotropic displacement parameters ($Å^2 \times 10^3$) for $(C_{11}H_{24}N_2)_2[In_{0.9}Sb_{0.1}Br_6][InBr_4]$ at 150K with estimated standard deviations in parentheses.

Label	U_{11}	U_{22}	U_{33}	U ₁₂	U_{13}	U_{23}
In(1)	28(1)	31(1)	33(1)	-1(1)	-1(1)	2(1)
Sb(1)	28(1)	31(1)	33(1)	-1(1)	-1(1)	2(1)
In(2)	44(1)	39(1)	37(1)	-2(1)	6(1)	2(1)
Br(4)	32(1)	35(1)	35(1)	-1(1)	0(1)	7(1)
Br(2)	34(1)	32(1)	37(1)	-1(1)	-2(1)	-2(1)
Br(6)	33(1)	37(1)	36(1)	2(1)	-1(1)	-4(1)
Br(3)	38(1)	35(1)	33(1)	0(1)	0(1)	-1(1)
Br(5)	41(1)	37(1)	37(1)	5(1)	-5(1)	-2(1)
Br(1)	35(1)	50(1)	42(1)	-1(1)	-2(1)	8(1)
Br(10)	45(1)	41(1)	48(1)	-1(1)	10(1)	6(1)
Br(9)	50(1)	42(1)	45(1)	1(1)	-4(1)	8(1)
Br(7)	103(1)	69(1)	38(1)	28(1)	16(1)	18(1)
Br(8)	45(1)	71(1)	130(2)	-15(1)	23(1)	-49(1)
N(1)	27(3)	31(3)	39(4)	-3(3)	-5(3)	4(3)
N(4)	32(3)	33(3)	37(4)	2(3)	3(3)	-2(3)
N(3)	28(3)	38(3)	40(4)	0(3)	-7(3)	6(3)

N(2)	36(4)	35(3)	25(3)	0(3)	4(3)	-1(3)
C(15)	34(4)	34(4)	38(5)	1(3)	-4(3)	-5(3)
C(13)	44(5)	27(4)	39(5)	-1(3)	3(4)	3(3)
C(16)	39(4)	36(4)	30(4)	1(3)	-7(3)	-2(3)
C(22)	44(5)	39(4)	40(5)	4(4)	-4(4)	2(4)
C(6)	37(4)	36(4)	31(4)	-1(3)	-3(3)	0(3)
C(18)	40(5)	38(4)	46(5)	-2(4)	3(4)	1(4)
C(14)	29(4)	33(4)	31(4)	1(3)	1(3)	0(3)
C(12)	44(5)	28(4)	41(5)	2(3)	6(4)	1(3)
C(17)	41(4)	29(4)	24(4)	5(3)	2(3)	1(3)
C(5)	39(5)	47(5)	33(5)	0(4)	-6(4)	12(4)
C(4)	40(4)	30(4)	33(4)	-6(3)	0(4)	-2(3)
C(19)	51(5)	33(4)	54(5)	-3(4)	-6(4)	-2(4)
C(1)	37(4)	42(4)	35(5)	3(4)	3(4)	-4(4)
C(2)	45(5)	28(4)	37(5)	-4(3)	-5(4)	-2(3)
C(11)	41(5)	49(5)	44(5)	12(4)	3(4)	8(4)
C(3)	35(4)	33(4)	34(4)	0(3)	3(3)	2(3)
C(20)	80(7)	38(4)	39(5)	4(5)	-1(5)	2(4)
C(21)	71(6)	37(4)	40(5)	19(4)	-18(4)	-5(4)
C(7)	49(5)	51(5)	33(5)	7(4)	-13(4)	1(4)
C(8)	48(5)	54(5)	42(5)	20(4)	1(4)	11(4)
C(10)	50(6)	50(5)	57(6)	7(4)	11(5)	24(4)
C(9)	58(6)	58(6)	49(6)	13(5)	18(5)	20(4)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S9. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for $(C_{11}H_{24}N_2)_2[In_{0.8}Sb_{0.2}Br_6][InBr_4]$ at 150 K with estimated standard deviations in parentheses.

Label	x	у	Ζ	Occupancy	$U_{\rm eq}$ *
In(1)	6331(1)	2179(1)	5213(1)	0.8	33(1)
Sb(1)	6331(1)	2179(1)	5213(1)	0.2	33(1)

In(2)	6365(1)	5113(1)	2989(1)	1	43(1)
$\operatorname{In}(2)$	6303(1)	2521(1)	4672(1)	1	43(1) 27(1)
BI(1)	0334(1)	3321(1)	4072(1)	1	57(1)
Br(5)	7454(1)	1316(1)	4/32(1)	1	37(1)
Br(3)	5058(1)	1504(1)	4775(1)	1	39(1)
Br(6)	7743(1)	2934(1)	5555(1)	1	40(1)
Br(2)	5078(1)	3151(1)	5615(1)	1	44(1)
Br(4)	6336(1)	976(1)	5809(1)	1	47(1)
Br(8)	5048(1)	4462(1)	2694(1)	1	47(1)
Br(7)	6524(1)	6657(1)	2838(1)	1	49(1)
Br(9)	6316(1)	4950(1)	3778(1)	1	76(1)
Br(10)	7648(1)	4307(1)	2753(1)	1	87(1)
N(2)	8841(4)	4387(4)	3814(2)	1	33(2)
N(1)	8431(4)	3274(4)	4510(2)	1	40(2)
N(3)	4192(4)	3667(4)	4577(2)	1	36(2)
N(4)	3796(4)	4825(4)	3892(2)	1	38(2)
C(5)	9450(5)	4782(5)	3502(3)	1	40(2)
C(3)	8852(5)	3438(4)	3772(3)	1	38(2)
C(2)	9031(5)	4629(5)	4261(2)	1	34(2)
C(6)	9490(5)	5745(5)	3539(2)	1	36(2)
C(17)	3333(5)	6176(5)	3515(3)	1	39(2)
C(4)	8244(5)	3017(5)	4070(3)	1	43(2)
C(1)	8415(5)	4220(5)	4563(3)	1	38(2)
C(12)	4159(5)	4608(4)	4642(2)	1	36(2)
C(11)	10070(6)	6095(5)	3190(3)	1	47(2)
C(7)	8625(5)	6176(5)	3514(3)	1	43(2)
C(16)	3204(5)	5217(5)	3565(3)	1	44(2)
C(14)	3831(5)	3870(5)	3829(3)	1	41(2)
C(22)	4140(5)	6392(5)	3270(3)	1	45(2)
C(20)	3444(6)	7705(6)	2974(3)	1	55(2)
C(19)	2646(5)	7490(5)	3206(3)	1	46(2)
· /	× /	× /	· /		

C(15)	4424(5)	3447(5)	4137(2)	1	42(2)
C(13)	3540(5)	5007(5)	4332(3)	1	38(2)
C(18)	2551(5)	6538(5)	3284(3)	1	47(2)
C(8)	8710(6)	7138(5)	3558(3)	1	50(2)
C(9)	9331(6)	7507(5)	3233(3)	1	58(2)
C(10)	10184(6)	7050(5)	3240(3)	1	55(2)
C(21)	4225(5)	7352(6)	3205(3)	1	55(2)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S10. Anisotropic displacement parameters ($Å^2 \times 10^3$) for $(C_{11}H_{24}N_2)_2[In_{0.8}Sb_{0.2}Br_6][InBr_4]$ at 150 K with estimated standard deviations in parentheses.

Label	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U ₂₃
In(1)	31(1)	34(1)	36(1)	1(1)	0(1)	2(1)
Sb(1)	31(1)	34(1)	36(1)	1(1)	0(1)	2(1)
In(2)	46(1)	42(1)	42(1)	3(1)	-6(1)	2(1)
Br(1)	34(1)	38(1)	39(1)	0(1)	0(1)	6(1)
Br(5)	37(1)	35(1)	41(1)	1(1)	3(1)	-2(1)
Br(3)	36(1)	40(1)	39(1)	-2(1)	0(1)	-3(1)
Br(6)	45(1)	39(1)	38(1)	0(1)	1(1)	-1(1)
Br(2)	49(1)	43(1)	39(1)	-8(1)	6(1)	-2(1)
Br(4)	36(1)	57(1)	48(1)	0(1)	2(1)	8(1)
Br(8)	47(1)	44(1)	51(1)	1(1)	-8(1)	6(1)
Br(7)	52(1)	45(1)	50(1)	0(1)	4(1)	8(1)
Br(9)	115(1)	73(1)	42(1)	-32(1)	-20(1)	19(1)
Br(10)	48(1)	76(1)	137(2)	17(1)	-26(1)	-52(1)
N(2)	36(3)	31(3)	32(3)	1(3)	2(3)	0(3)
N(1)	34(3)	39(3)	46(4)	0(3)	4(3)	2(3)
N(3)	33(3)	30(3)	44(4)	-1(2)	-3(3)	6(3)
N(4)	42(3)	40(3)	33(4)	-1(3)	0(3)	1(3)
C(5)	33(4)	47(4)	40(5)	-2(3)	7(3)	2(4)

C(3)	46(4)	32(4)	38(5)	1(3)	-2(3)	4(3)
C(2)	40(4)	36(4)	26(4)	-2(3)	-2(3)	-4(3)
C(6)	44(4)	35(4)	30(4)	-5(3)	-3(3)	-5(3)
C(17)	36(4)	44(4)	37(5)	4(3)	-7(3)	1(3)
C(4)	37(4)	38(4)	54(5)	0(3)	-2(4)	0(4)
C(1)	37(4)	35(4)	42(5)	1(3)	6(3)	3(3)
C(12)	37(4)	32(4)	39(4)	-4(3)	-6(3)	0(3)
C(11)	57(5)	39(4)	46(5)	-9(4)	12(4)	-5(4)
C(7)	48(5)	35(4)	46(5)	-9(3)	5(4)	-6(4)
C(16)	42(4)	51(5)	38(5)	1(4)	-13(4)	7(4)
C(14)	50(5)	40(4)	33(4)	-5(3)	-1(4)	-2(3)
C(22)	46(5)	45(5)	44(5)	4(4)	5(4)	6(4)
C(20)	54(5)	60(6)	50(6)	11(4)	8(4)	15(4)
C(19)	46(5)	54(5)	38(5)	13(4)	9(4)	4(4)
C(15)	44(4)	45(4)	37(5)	5(4)	6(4)	-1(4)
C(13)	40(4)	33(4)	42(5)	-2(3)	-5(3)	-2(3)
C(18)	49(5)	55(5)	37(5)	3(4)	-6(4)	6(4)
C(8)	63(6)	33(4)	55(6)	7(4)	1(4)	1(4)
C(9)	77(6)	35(4)	63(6)	-6(4)	6(5)	6(4)
C(10)	73(6)	48(5)	43(5)	-18(4)	21(5)	-7(4)
C(21)	48(5)	55(5)	63(6)	5(4)	14(5)	18(5)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S11. Distortion degree of the $[In(Sb)Br_6]^{3-}$ octahedron and $[In(Sb)Br_4]^{-}$ tetrahedron for $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:xSb^{3+}$ (x = 0, 0.05 and 0.10) at 150 K.

	x	0	0.05	0.10
λ_{oct}		1.69 × 10 ⁻⁴	2.29 × 10 ⁻⁴	3.09×10^{-4}
δ_{oct}^{2}		18.07	21.36	23.98
λ_{tet}		2.08×10^{-5}	1.95×10^{-5}	2.03×10^{-5}
$\delta_{tet}^{\ 2}$		10.25	9.96	9.57

Figure S1. PXRD patterns of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ for simulation based on the singe-crystal refinements (blue), experimental data of fresh synthesized samples (black), and those in air for 3 months (red).

Figure S2. Emission spectra at different excitation wavelength of (a) $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$, and (e) $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$:5%Sb³⁺. (b) Photoluminescent spectra of 1-(crylohexylmethyl)piperazine. Normalized (c) excitation and (d) emission spectra of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$:xSb³⁺. (f) Integral PL intensity of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$:xSb³⁺.

Figure S3. PLQY of (a) (C₁₁H₂₄N₂)₂[InBr₆][InBr₄], and (b) (C₁₁H₂₄N₂)₂[InBr₆][InBr₄]:5%Sb³⁺.

Figure S4. Band gap value of $(C_{11}H_{24}N_2)_2$ [InBr₆][InBr₄] obtained from Tauc plot.¹

Figure S5. Comparison of the PL spectra of the as-prepared $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:5\%Sb^{3+}$ and the one exposed in the air for 3 months.

Figure S6. Time-resolved decay curves of $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]:xSb^{3+}$ by single exponential fit. (a)-(f) correspond x = 0, 0.005, 0.01, 0.05, 0.10, 0.20 in turn.

Figure S7. The structure model used for calculating the Sb-doped $(C_{11}H_{24}N_2)_2[InBr_6][InBr_4]$ (H atoms are omitted for charity). One of the eight In atoms in $[InBr_6]^{3-}$ octahedra was replaced by Sb atom, resulting in the formula $(C_{11}H_{24}N_2)_2[In_{0.875}Sb_{0.125}Br_6][InBr_4]$.

Reference

[1] J. Tauc, Mater. Res. Bull., 1968, 3, 37-46.