Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Supporting Information for

Amorphous copper iodide: A p-type semiconductor for solution-processed p-channel thin-film transistors and inverters

Han Ju Lee¹, Seonjeong Lee¹, Keun Hyung Lee^{2,3*}, and Kihyon Hong^{1,*}

¹Department of Materials Science and Engineering, Chungnam National University (CNU),

Daejeon 34134, Republic of Korea

²Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212,

Republic of Korea

³Education and Research Center for Smart Energy and Materials, Inha University, Incheon

22212, Republic of Korea

Email: <u>kh.lee@inha.ac.kr</u> (K. H. Lee), <u>khong@cnu.ac.kr</u> (K. Hong)

Figure S1. XRD spectra of CuI samples annealed in N_2 ambient. Annealing temp.: 100 °C.

Figure S2. Experimentally measured evaporation rate (change of weight) of solvents used in this work.

Figure S3. (a) and (b) Charge carrier mobility and density of CuI samples measured by Hall effect. Five samples were tested in order to obtain an average measure of mobility.

Figure S4. (a)-(c) I_G - V_G curves for CuI-VTFTs.

Figure S5. Output characteristics of CuI-VTFTs.

Figure S6. (a) Film densities of the CuI samples. (b) Load-displacement curves of the CuI films on the Si/SiO_2 substrate. (c) Film hardness values calculated from nanoindentation measurements.