Supporting Information

Light-Emitting Ti₂N (MXene) Quantum Dots: Synthesis, Characterization and Theoretical Calculations

Anir S. Sharbirin^a, Shrawan Roy^a, Trang Thu Tran^a, Sophia Akhtar^a, Jaspal Singh^a, Dinh Loc Duong^{*,b} and Jeongyong Kim^{*,a}

^aDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Korea.

^bCenter for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS),

Suwon 16419, Republic of Korea.

Corresponding authors: Email: *D.L.D (ddloc@skku.edu); J.K (j.kim@skku.edu)

Table of Contents:

- 1. TEM image (scale bar = 50 nm) of Ti₂C MQDs.
- 2. Fluorescence of Ti_2N MQDs dispersed in water.
- 3. PL-spectrum of Ti₂N MQDs solution and thin film at 375-nm laser excitation. Confocal image of thin-film Ti₂N MQDs at 405-nm laser excitation. Thin-film Ti₂N MQDs drop casted on quartz substrate illuminated with UV (250 nm) LED.
- 4. Plot of Ti_2N MQDs QY estimation vs. excitation energy.
- 5. PL intensity and QY of Ti_2N MQDs in 10 days.
- 6. (A) PL spectra and (B) QY of Ti_2N MQDs in different pH condition ranging 2 12.
- 7. (A) UV-Vis absorption spectra, (B) PL spectra and (C) QY of Ti_2N MQDs with the presence of Co^{2+} and Mn^{2+} ions.
- 8. DFT calculation of Ti_2NO_2 MQDs with sizes of 1.5 nm and 3 nm.
- 9. DFT calculation of Ti_2N MQDs.
- 10. Supporting note Figure S3

11. Supporting note Figure S4: Measurement of QY

Figure S1: A. TEM image (scale bar = 50 nm) of Ti_2C MQDs. B. HR-TEM image (scale bar = 2 nm) of Ti_2C MQDs C. Size distribution of Ti_2C MQDs in (A). Inset of (B) is the FFT pattern of the corresponding HR-TEM image

Figure S2: Fluorescence of Ti_2N MQDs dispersed in water. The MQDs showed blue emission when illuminated with UV (250 nm) LEDs.

Figure S3: A. PL-spectrum of Ti_2N MQDs solution (black) and thin film (red) at 375-nm laser excitation B. Confocal image (scale bar = 5 µm) of thin-film Ti_2N MQDs at 405-nm laser excitation. C. Blank quartz substrate illuminated with UV (250 nm) LED D. Thin-film Ti_2N MQDs drop casted on quartz substrate illuminated with UV (250 nm) LED.

Figure S4: Plot of Ti_2N MQDs QY estimation vs. excitation energy (ranging from 250–400 nm wavelength excitation)

Figure S5: (A) PL intensity and (B) QY of Ti₂N MQDs in 10 days.

Figure S6: (A) PL spectra and (B) QY of Ti₂N MQDs in different pH condition ranging 2 - 12.

Figure S7: (A) UV-Vis absorption spectra, (B) PL spectra and (C) QY of Ti_2N MQDs with the presence of Co^{2+} and Mn^{2+} ions.

Figure S8: DFT calculation of Ti_2NO_2 MQDs with sizes of (A) 1.5 nm and (B) 3 nm.

Figure S9: DFT calculation of Ti₂N MQDs.

Supporting note Figure S3:

We further confirmed the light-emitting property and PL behavior of thin-film Ti₂N MQDs for comparison with the PL of the Ti₂N MQD solution using a 375 nm laser (Figure S3A). The PL showed a redshift of the peak position when the colloidal solution was changed to a solid-state.¹ The PL confocal mapping of the thin film (Figure S3B) was performed using 405 nm laser excitation. The longer wavelength allowed proper observation of the PL of Ti₂N in solution. By illuminating the blank quartz substrate and thin-film Ti₂N MQDs using a UV (250 nm) LED, we demonstrated the light-emissive properties of the MQDs (Figures S3C and S3D).

Supporting note Figure S4: Measurement of Quantum Yield

We measured the absolute quantum yield (QY) of rhodamine 6G (R6G) solution in an integrating sphere and at different excitations using a commercial QY spectrometer. The PL and UV-Vis absorption of R6G and Ti₂N MQDs were measured under the same conditions, which were then compared to estimate the QY of the MQDs using Equation $(1)^2$:

$$\Phi_{MQD} = \Phi_{ref} \frac{I_{(MQD)} / A_{(MQD)}}{I_{(ref)} / A_{(ref)}}$$

(1)

where ϕ_{MQD} and ϕ_{ref} are the QY of the MQDs and reference sample, respectively. $I_{(MQD)}$ is the PL intensity of the MQDs, $I_{(ref)}$ is the PL intensity of the reference sample, and $A_{(MQD)}$ and $A_{(ref)}$ are the absorptions of the MQDs and reference sample, respectively. The QY (%) of Ti₂N were calculated within the range of 250 to 400 nm wavelength excitation. For this measurement, the R6G solution was used as the reference sample.

References

- T. E. Saraswati, U. H. Setiawan, M. R. Ihsan, I. Isnaeni and Y. Herbani, *Open Chem.*, 2019, 17, 1198–1212.
- S. Roy, A. S. Sharbirin, Y. Lee, W. Bin Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung and
 J. Kim, *Nanomaterials*, 2020, 10, 1032.