Supporting Information

Light-Emitting Ti$_2$N (MXene) Quantum Dots: Synthesis, Characterization and Theoretical Calculations

Anir S. Sharbirina, Shrawan Roya, Trang Thu Tranb, Sophia Akhtarb, Jaspal Singhb, Dinh Loc Duong*,b and Jeongyong Kima,

aDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Korea.
bCenter for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.

Corresponding authors: Email: *D.L.D (ddloc@skku.edu); J.K (j.kim@skku.edu)

Table of Contents:

1. TEM image (scale bar = 50 nm) of Ti$_2$C MQDs.
2. Fluorescence of Ti$_2$N MQDs dispersed in water.
3. PL-spectrum of Ti$_2$N MQDs solution and thin film at 375-nm laser excitation. Confocal image of thin-film Ti$_2$N MQDs at 405-nm laser excitation. Thin-film Ti$_2$N MQDs drop casted on quartz substrate illuminated with UV (250 nm) LED.
4. Plot of Ti$_2$N MQDs QY estimation vs. excitation energy.
5. PL intensity and QY of Ti$_2$N MQDs in 10 days.
6. (A) PL spectra and (B) QY of Ti$_2$N MQDs in different pH condition ranging 2−12.
7. (A) UV-Vis absorption spectra, (B) PL spectra and (C) QY of Ti$_2$N MQDs with the presence of Co$^{2+}$ and Mn$^{2+}$ ions.
8. DFT calculation of Ti$_2$NO$_2$ MQDs with sizes of 1.5 nm and 3 nm.
9. DFT calculation of Ti$_2$N MQDs.
10. Supporting note Figure S3
11. Supporting note Figure S4: Measurement of QY
Figure S1: A. TEM image (scale bar = 50 nm) of Ti$_2$C MQDs. B. HR-TEM image (scale bar = 2 nm) of Ti$_2$C MQDs. C. Size distribution of Ti$_2$C MQDs in (A). Inset of (B) is the FFT pattern of the corresponding HR-TEM image.
Figure S2: Fluorescence of Ti$_2$N MQDs dispersed in water. The MQDs showed blue emission when illuminated with UV (250 nm) LEDs.
Figure S3: A. PL-spectrum of Ti$_2$N MQDs solution (black) and thin film (red) at 375-nm laser excitation. B. Confocal image (scale bar = 5 µm) of thin-film Ti$_2$N MQDs at 405-nm laser excitation. C. Blank quartz substrate illuminated with UV (250 nm) LED. D. Thin-film Ti$_2$N MQDs drop casted on quartz substrate illuminated with UV (250 nm) LED.
Figure S4: Plot of Ti$_2$N MQDs QY estimation vs. excitation energy (ranging from 250–400 nm wavelength excitation)
Figure S5: (A) PL intensity and (B) QY of Ti$_2$N MQDs in 10 days.
Figure S6: (A) PL spectra and (B) QY of Ti$_2$N MQDs in different pH condition ranging 2 – 12.
Figure S7: (A) UV-Vis absorption spectra, (B) PL spectra and (C) QY of Ti$_2$N MQDs with the presence of Co$^{2+}$ and Mn$^{2+}$ ions.
Figure S8: DFT calculation of Ti$_2$NO$_2$ MQDs with sizes of (A) 1.5 nm and (B) 3 nm.
Figure S9: DFT calculation of Ti$_2$N MQDs.
Supporting note Figure S3:

We further confirmed the light-emitting property and PL behavior of thin-film Ti$_2$N MQDs for comparison with the PL of the Ti$_2$N MQD solution using a 375 nm laser (Figure S3A). The PL showed a redshift of the peak position when the colloidal solution was changed to a solid-state. The PL confocal mapping of the thin film (Figure S3B) was performed using 405 nm laser excitation. The longer wavelength allowed proper observation of the PL of Ti$_2$N in solution. By illuminating the blank quartz substrate and thin-film Ti$_2$N MQDs using a UV (250 nm) LED, we demonstrated the light-emissive properties of the MQDs (Figures S3C and S3D).
Supporting note Figure S4: Measurement of Quantum Yield

We measured the absolute quantum yield (QY) of rhodamine 6G (R6G) solution in an integrating sphere and at different excitations using a commercial QY spectrometer. The PL and UV-Vis absorption of R6G and Ti$_2$N MQDs were measured under the same conditions, which were then compared to estimate the QY of the MQDs using Equation (1):

$$\Phi_{MQD} = \Phi_{ref} \frac{I_{(MQD)}}{A_{(MQD)}} \frac{I_{(ref)}}{A_{(ref)}}$$

(1)

where Φ_{MQD} and Φ_{ref} are the QY of the MQDs and reference sample, respectively. $I_{(MQD)}$ is the PL intensity of the MQDs, $I_{(ref)}$ is the PL intensity of the reference sample, and $A_{(MQD)}$ and $A_{(ref)}$ are the absorptions of the MQDs and reference sample, respectively. The QY (%) of Ti$_2$N were calculated within the range of 250 to 400 nm wavelength excitation. For this measurement, the R6G solution was used as the reference sample.
References
