Supporting information

Atomic layer deposition of titanium oxide thin film using titanium precursor with a linked amidocyclopentadienyl ligand

Seongyoon Kim,^{†,a} Romel Hidayat,^{†,a} Hyeonsu Roh,^a Jaemin Kim,^a Hye-Lee Kim,^a Khabib Khumaini,^{a,b} Mira Park,^c Jang-Hyeon Seok,^c Jung Woo Park,^c and Won-Jun Lee^{a,*}

^aDepartments of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

^bDepartments of Chemistry, Universitas Pertamina, Jakarta 12200, Indonesia

^cThin Film Material Research Team, Hansol Chemical Co., Ltd., Wanju-gun, Jeonbuk 55321, Republic of Korea

[†]S. Kim and R. Hidayat are equally contributed first authors

Bond dissociation energy

Bond dissociation energy (BDE) values were calculated using Equation (1).

$$BDE = D_{o}^{298K} = \Delta_{f} H^{\circ}(A) + \Delta_{f} H^{\circ}(B) - \Delta_{f} H^{\circ}(AB)$$
⁽¹⁾

where D_{0}^{298K} is the enthalpy of the dissociation of the A–B bond, and $\Delta_{f}H^{\circ}(A)$, $\Delta_{f}H^{\circ}(B)$, and $\Delta_{f}H^{\circ}(AB)$ are the enthalpies of the formation of A, B, and AB, respectively. The enthalpies were calculated using Equation (2).

$$H^{\circ}(298 K) = E_o + ZPE + H_{translation} + H_{rotation} + H_{vibration} + k_B T$$
(2)

where E_0 is the standard total energy of electronic calculations, ZPE is zero-point energy obtained by frequency calculations, and k_B and T are Boltzmann constant and temperature. $H_{\text{translation}}$, H_{rotation} , and $H_{\text{vibration}}$ correspond to the contributions of translation, rotation, and vibration of a molecule, respectively.^{1,2} The vibrational frequencies were not scaled because the scale factor (0.9989) was so close to unity that it did not affect the results. All calculations were performed by Materials Studio 7.0 with DMol³ package (Biovia, USA). The functional theory and basis set were generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) scheme correction and the double numerical polarization (DNP) 4.4.

Figure S1 shows the BDE values of Ti–O, O–H, N–H, and C–H bonds.

Bonds	Molecular sample	Schematic	BDE (eV)
Ti–O	(OH) ₃ Ti–O H	н _о о о~ті~о ^{лн} н о	4.72
О-Н	(OH)₃Ti O–H	H O O Ti~O [,] H H O, H	4.87
N-H	(CH ₃) ₂ N–H	H ₃ C NH H ₃ C	3.87
С–Н	C_5H_5-H	H H	3.41
N-H	(C ₅ H ₅)CH(CH ₃)(CH ₃ N–H)	H H H-N	3.80
С–Н	(C ₅ H ₄ -H)CH(CH ₃)(NHCH ₃)	H H H-N	3.32

Figure S1. BDE values of Ti–O, O–H, N–H, and C–H bonds.

Desorption of byproduct molecules

The desorption of a byproduct molecule, HNMe₂ or HCp, from the hydroxylated TiO₂ surface was modeled and simulated, as shown in Figure S2. The temperature-dependent free energy of desorption, $G_{des}(T)$ was calculated using Equation (3).

$$G_{des}(T) = (G_{final}(T) + G_{byproduct}(T)) - G_{initial}(T)$$
(3)

where $G_{final}(T)$, $G_{byproduct}(T)$, and $G_{initial}(T)$ are the free energies of surface, gas-phase byproduct molecule, and physisorbed byproduct molecule, respectively. $G_{des}(T)$ under 1 Torr (1 atm = 760 Torr) was calculated using Equation (4).

$$G_{des}(T) (1 Torr) = G_{des}(T) (1 atm) + RT \ln P_{byproduct \ molecule}$$
(4)

The free energies were calculated using Equation (5).

$$G(T) = E_o + ZPE + G_{translation} + G_{rotation} + G_{vibration} + k_B T$$
(5)

where $G_{\text{translation}}$, G_{rotation} , and $G_{\text{vibration}}$ correspond to the contributions of translation, rotation, and vibration of a molecule, respectively. The DFT calculation was performed by Materials Studio 7.0 with the DMol³ package (Biovia, USA). The functional theory of generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) scheme correlation and the basis set of the double numerical polarization (DNP) 4.4 were used in all calculations. Figure S2 shows the temperature-dependent free energy change for the desorption of $HNMe_2$ or HCp from the TiO₂ surface. The free energy change by the desorption of $HNMe_2$ was negative at 88 °C or higher temperatures. The free energy change by the desorption of HCp was also negative at 184 °C or higher temperatures. The results indicate the spontaneous desorption process of $HNMe_2$ or HCp during the ALD TiO₂ processes.

Figure S2. The temperature-dependent free energy change for the desorption of (a) $HNMe_2$ or (b) HCp from the TiO_2 surface.

References:

- 1 A. K. Chandra and T. Uchimaru, J. Phys. Chem. A, 2000, **104**, 9244–9249.
- 2 S. J. Blanksby and G. B. Ellison, Acc. Chem. Res., 2003, 36, 255–263.