Electronic supplementary information

meso-Ethynyl-extended push-pull type porphyrins for near-infrared organic photodetectors

Sam Gielen, Virginia Cuesta Gómez, Sonny Brebels, Tyler James Quill, Jochen Vanderspikken, Laurence Lutsen, Pilar de la Cruz, Koen Vandewal, Fernando Langa, Wouter Maes

Table of contents

Section 1: Synthesis and characterization (strategy 1) S2
1.1. Materials and methods S2
1.2. Synthesis and characterization of the precursors and meso-ethynyl-extended porphyrin chromophores for strategy 1 S3
1.3. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and MALDI-ToF mass spectra S9
1.4. UV-VIS-NIR absorption spectra S19
1.5. Cyclic voltammetry S19
Section 2: Device characterization and optimization S20
2.1. Organic photodetector fabrication and characterization S20
2.2. Device optimization and characterization S21
Section 3: Synthesis and characterization of the precursors for strategy 2 and TII-Por-TII S28
3.1. Materials and methods S28
3.2. Synthesis and characterization of the precursors, the ethynyl-extended acceptor chromophores, and TII-Por-TII S28
3.3. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and MALDI-ToF mass spectra S33
References S37

Section 1: Synthesis and characterization (strategy 1)

1.1. Materials and methods

Preparative (recycling) size exclusion chromatography (prep-SEC) was performed on a JAI LC-9110 NEXT system equipped with JAIGEL 1 H and 2 H columns (eluent CHCl_{3}, flow rate $3.5 \mathrm{~mL} \mathrm{~min}^{-1}$). NMR chemical shifts (δ, in ppm) were determined relative to the residual CHCl_{3} (7.26 ppm) or THF (1.73 and 3.58 ppm) signals or the ${ }^{13} \mathrm{C}$ resonance shift of CDCl_{3} (77.16 ppm). Matrix-assisted laser desorption/ionization - time-of-flight (MALDI-ToF) mass spectra were recorded on a Bruker UltrafleXtreme ${ }^{\text {TM }}$ MALDI-TOF/TOF system. Approximately $1 \mu \mathrm{~L}$ of the matrix solution ($25 \mathrm{mg} \mathrm{mL}^{-1}$ trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DTCB) in chloroform) was spotted onto an MTP Anchorchip 600/384 MALDI plate. The spot was allowed to dry and $1 \mu \mathrm{~L}$ of the analyte solution ($10 \mathrm{mg} \mathrm{mL}^{-1}$ in chloroform) was spotted on top of the matrix. High resolution electrospray ionization mass spectrometry (ESI-MS) was performed using an LTQ Orbitrap Velos Pro mass spectrometer equipped with an atmospheric pressure ionization source operating in the nebulizer assisted electrospray mode. The instrument was calibrated in the m / z range 220-2000 using a standard solution containing caffeine, MRFA, and Ultramark 1621. UV-VIS-NIR absorption spectroscopy measurements were performed on a VARIAN Cary 5000 UV-VIS-NIR spectrophotometer at a scan rate of $600 \mathrm{~nm} \mathrm{~min}^{-1}$. The films for the UV-VIS-NIR absorption measurements were prepared by spin-coating a solution of the respective porphyrin molecule in chloroform on a glass substrate. The solid-state UV-VIS-NIR absorption spectra were used to estimate the optical gaps (from the wavelength at the intersection of the tangent line drawn at the low energy side of the absorption spectrum with the baseline: $E_{\mathrm{g}}(\mathrm{eV})=1240 /($ wavelength in nm$)$). Electrochemical measurements (cyclic voltammetry, CV) were performed with an Eco Chemie Autolab PGSTAT 30 potentiostat/galvanostat using a threeelectrode microcell with a platinum working electrode, a platinum counter electrode, and an $\mathrm{Ag} / \mathrm{AgNO}_{3}$
 acetonitrile). The reference electrode was calibrated against ferrocene/ferrocenium as an external standard. Sample preparation was done by dip-coating the platinum working electrode in the respective polymer solutions. The CV measurements were done on the resulting films with 0.1 M $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ in anhydrous acetonitrile as electrolyte solution. The experiments were carried out under a curtain of argon to prevent air from entering the system. Cyclic voltammograms were recorded at a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$. For the conversion of V to eV , the onset potentials of the first oxidation/reduction peaks were used and referenced to ferrocene/ferrocenium, which has an ionization potential of -4.98 eV vs. vacuum. This correction factor is based on a value of 0.31 eV for $\mathrm{Fc} / \mathrm{Fc}^{+}$vs. SCE and a value of 4.68 eV for SCE vs. vacuum: $E_{\text {номо/Luмо }}(\mathrm{eV})=-4.98-E_{\text {onset ox/red }}{ }^{\mathrm{Ag} / \mathrm{AgNO}}(\mathrm{V})$ $+E_{\text {onset }} \mathrm{Fc} / \mathrm{Fc}+{ }^{\mathrm{Ag} / \mathrm{AgNO3}}(\mathrm{~V}) .{ }^{1,2}$ The accuracy of measuring redox potentials by CV is about $0.01-0.02 \mathrm{~V}$.

Reproducibility issues can occur due to the dependence of the potentials on concentration and temperature.
1.2. Synthesis and characterization of the precursors and meso-ethynyl-extended porphyrin chromophores for strategy 1

All reagents and chemicals were obtained from commercial sources and used without further purification, except for pyrrole which was freshly distilled before use. Solvents were dried on a solvent purification system (MBraun, MB-SPS-800) equipped with alumina columns. The 5,15-dialkynated porphyrin 9 (Scheme S1) ${ }^{3}$, $\mathrm{A}_{3} B$-porphyrin 12 (Scheme S 2$)^{4}$, and the acceptor molecules ${ }^{5-7}$ were prepared according to literature procedures.

Scheme S1: Synthetic pathway toward 5,15-meso-ethynylporphyrin 9: i) paraformaldehyde, TFA, $R T$; ii) NBS, $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, R T$; iii) thiophene, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to $R T$; iv) $\mathrm{POCl}_{3}, D M F$, reflux; v) (1) $B F_{3} . E t_{2} \mathrm{O}$, $\mathrm{CHCl}_{3}, \mathrm{RT}$; (2) $D D Q$; vi) NBS , pyridine, $\mathrm{CHCl}_{3}, \mathrm{RT}$; vii) $\mathrm{Zn}(\mathrm{OAC})_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH}, 70^{\circ} \mathrm{C}$; viii) TMS-acetylene, $\left.\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}, E t_{3} \mathrm{~N}, \mathrm{THF}, 50^{\circ} \mathrm{C} ; i x\right)$ TBAF, THF, RT.

Scheme S2: Synthetic pathway toward mono-alkynated $A_{3} B$-porphyrin 12: i) (1) $\mathrm{BF}_{3} . \mathrm{EtO}_{2}, \mathrm{CHCl}_{3}, R T$; (2) DDQ; ii) $\mathrm{Zn}(\mathrm{OAc})_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH}, \mathrm{RT}$; iii) TBAF, THF, RT.

General monobromination procedure: The acceptor material was dissolved in CHCl_{3} and the solution was cooled down to $0^{\circ} \mathrm{C}$ while stirring. Then, NBS (1 equiv.) was added portionwise and the mixture was stirred overnight, slowly heating up to room temperature. The solvents were removed and column chromatography (silica, CHCl_{3} :petroleum ether mixture) was performed to yield the pure product.

TQ

Scheme S3: Monobromination of the acceptor molecules: i) NBS (1 equiv), CHCl_{3}, RT.
4-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-6,7-bis(5-(2-hexyldecyl)thiophen-2-yl)-9-(4-(2-octyldodecyl)thiophen-2-yl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (13). Column chromatography $\left(\mathrm{CHCl}_{3}\right.$:petroleum ether, 1:4) was performed to yield the pure product as a purple oil. Yield $=39 \%$ (135 $\mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.74(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.15(\mathrm{~m}, 112 \mathrm{H}), 0.90-0.80$ $(\mathrm{m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=152.6,152.3,152.0,152.0,146.7,146.5,142.3,141.3$, 139.9, 139.6, 136.0, 135.9, 135.9, 135.0, 134.8, 134.7, 132.5, 132.4, 128.0, 126.5, 126.4, 121.0, 119.6, $118.3,40.6,39.6,39.2,35.6,34.7,33.9,32.5,30.6,30.2,29.9,27.2,23.2,14.7$. MALDI-ToF MS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{96} \mathrm{H}_{155} \mathrm{BrN}_{4} \mathrm{~S}_{5}: 1603.00[\mathrm{M}]^{+}$; found 1603.01.

4-(5-bromothiophen-2-yl)-6,7-bis(5-(2-hexyldecyl)thiophen-2-yl)-9-(thiophen-2-yl)[1,2,5]thiadiazo-lo[3,4-g]quinoxaline (14). Column chromatography (CHCl_{3} :petroleum ether, $1: 4$) was performed to yield the pure product as a purple oil. Yield $=56 \%(374 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.89$
(dd, J = 3.9, 1.2 Hz, 1H), $8.80(d, J=4.2 H z, 1 H), 7.70(d d, J=5.2,1.2 H z, 1 H), 7.49-7.46(m, 2 H), 7.31$ (dd, J = 5.2, 3.9 Hz, 2H), $7.25(1 \mathrm{H}), 6.74(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 48 \mathrm{H}), 0.91-0.81(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=151.9,151.6,151.2,146.3,146.1,139.4,139.1,137.5,135.8,135.9,134.1$, $133.9,133.2,133.0,132.2,132.1,131.2,129.5,126.8,126.0,120.5,119.7,119,140.2,40.1,35.1,35.0$, $33.5,32.1,30.2,30.1,29.8,29.5,26.8,22.8,14.3$. ESI-MS (m / z): calculated for $\mathrm{C}_{56} \mathrm{H}_{75} \mathrm{BrN}_{4} \mathrm{~S}_{5}$: 1042.3779 [M] ${ }^{+}$; found 1042.3776.

4-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-8-(4-(2-octyldodecyl)thiophen-2-yl)-1H,5H-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (15). Column chromatography (CHCl_{3} :petroleum ether, $15: 85$) was performed to yield the pure product as a blue solid. Yield $=57 \%(82 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=8.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.24(1 \mathrm{H}), 2.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.85-1.78(\mathrm{br}, 1 \mathrm{H}), 1.77-1.71(\mathrm{br}, 1 \mathrm{H}), 1.40-1.15(\mathrm{~m}, 64 \mathrm{H}), 0.90-0.80(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=150.8,150.5,143.0,142.1,137.1,137.0,134.9,133.8,127.6,117.6,113.7,111.9$, $39.1,38.7,35.1,34.2,33.5,32.0,30.2,29.9,29.8,29.8,29.5,29.5,26.8,26.7,22.8,14.2$. ESI-MS (m / z) : calculated for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{BrN}_{4} \mathrm{~S}_{4}$: $996.4840[\mathrm{M}]^{+}$; found 996.4837.

5-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-2,3-bis(5-(2-hexyldecyl)thiophen-2-yl)-7-(4-(2-

octyldodecyl)thiophen-2-yl)thieno[3,4-b]pyrazine (16). Column chromatography (CHCl_{3} :petroleum ether, $5: 95$) was performed to yield the pure product as a green solid. Yield $=15 \%$ (41 mg). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) , $\delta(\mathrm{ppm}): 7.42(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $(\mathrm{s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.55$ (d, J = 6.8 Hz, 2H), $2.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.16(\mathrm{~m}, 112 \mathrm{H}), 0.92-0.80(\mathrm{~m}, 24 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=149.9,149.7,146.3,142.1,142.4,141.3,140.1,140.0,136.7$, $136.3,134.2,134.2,130.5,130.4,126.6,125.8,125.0,124.6,122.9,122.8,112.0,40.1,40.0,39.0,38.7$, 35.0, 35.0, 34.3, 33.4, 32.0, 30.2, 29.8, 29.5, 26.8, 26.7, 22.8, 14.2. ESI-MS (m / z): calculated for $\mathrm{C}_{94} \mathrm{H}_{155} \mathrm{BrN}_{2} \mathrm{~S}_{5}: 1550.00[\mathrm{M}]^{+}$; found 1550.01.

Dibromination procedure: The dibrominated acceptor molecules (Scheme S4) were prepared according to literature procedures. ${ }^{7,8}$

Scheme S4: Dibrominated acceptor molecules for the preparation of the D-A-D chromophores: i) NBS (2 equiv), $\mathrm{CHCl}_{3}, \mathrm{RT}$.

4,9-bis(5-bromothiophen-2-yl)-6,7-bis(5-(2-hexyldecyl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4g]quinoxaline (17). ${ }^{7}$ Quantitative yield (6.65 g). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.79(\mathrm{~d}, \mathrm{~J}=4.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$, 1.81-1.73 (m, 2H), 1.41-1.20(m, 48H), 0.89-0.81 (m, 12H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $151.9,151.1,146.2,139.0,137.4,133.5,133.2,132.3,129.5,126.0,120.0,119.0,40.2,35.1,33.5,32.1$, 30.1, 29.8, 29.5, 26.9, 26.8, 22.84, 22.82, 14.27, 14.25.

4,9-dibromo-6,7-bis(5-(2-hexyldecyl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (18). ${ }^{8}$ Yield $=28 \%(0.50 \mathrm{~g}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.51(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.82(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 48 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=153.3,152.3,148.9,139.2,139.8,132.4,126.4,112.5,40.2,35.2,33.4,32.01,31.98$, 30.1, 29.7, 29.5, 26.69, 26.66, 22.8, 14.2.

General Sonogashira cross-coupling procedure for the A-D-A type porphyrins: Porphyrin precursor 9 (1 equiv.) and the respective monobrominated acceptor molecule 13-16 (2.2 equiv.) were placed in a Schlenk flask and the flask was flushed three times with N_{2}, after which dry toluene (7.3 mM) and dry $\mathrm{Et}_{3} \mathrm{~N}(3.7 \mathrm{mM})$ were added. Then, the mixture was purged with N_{2} for 30 min . Afterwards, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.05 equiv.) and Cul (0.05 equiv.) were added and the reaction was stirred overnight at $85{ }^{\circ} \mathrm{C}$. Next morning, the reaction mixture was cooled down, water was added and extraction was done with CHCl_{3}. The organic solution was dried over MgSO_{4}, filtered and evaporated to dryness. Flash column chromatography (silica) was performed with CHCl_{3} :petroleum ether (3:1), followed by preparative (recycling) SEC to yield the product as a dark brown solid.

Scheme S5: Sonogashira cross-coupling reaction of alkynated porphyrin 9 and monobrominated acceptor molecules 13-16: i) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}, E t_{3} \mathrm{~N}$, toluene, $85{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{2}}$ TQ-Por-TQR $\mathbf{2}_{2}$ (19). Yield $=42 \%(49 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right.$), $\delta(\mathrm{ppm}): 9.70(\mathrm{~s}, 4 \mathrm{H}), 9.15(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 9.06(\mathrm{~s}, 2 \mathrm{H}), 8.78(\mathrm{~s}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 4H), 2.27-2.16 (m, 2H), 2.00-1.90 (m, 2H), 1.82-1.74 (br, 4H), 1.70-1.15 (br, 256H), 1.00-0.50 (br, 60H). MALDI-ToF MS (m / z): calculated for $\mathrm{C}_{248} \mathrm{H}_{376} \mathrm{~N}_{12} \mathrm{~S}_{12} \mathrm{Zn}$: 3966.54 [M$]^{+}$; found 3966.55 .

TQ-Por-TQ (20). Yield $=46 \%(213 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right), \delta(\mathrm{ppm}): 9.30(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, $9.03(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.64(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.91(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.15(\mathrm{br}, 128 \mathrm{H}), 1.15-0.80(\mathrm{br}, 24 \mathrm{H}) .0 .60$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. MALDI-ToF MS (m/z): calculated for $\mathrm{C}_{168} \mathrm{H}_{212} \mathrm{~N}_{12} \mathrm{~S}_{12} \mathrm{Zn}: 2845.29$ [M] ${ }^{+}$; found 2845.27.

BBT-Por-BBT (21). Yield $=26 \%(27 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right), \delta(\mathrm{ppm}): 10.81(\mathrm{~s}, 2 \mathrm{H}), 9.05(\mathrm{~d}, \mathrm{~J}=$ $4.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.92(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.73(\mathrm{~s}, 2 \mathrm{H}), 8.54(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 3.27$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 8 \mathrm{H}), 2.67(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.70(\mathrm{~m}, 8 \mathrm{H})$, $1.40-1.10(\mathrm{br}, 160 \mathrm{H}), 1.05-1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 0.88-0.82(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 0.80-0.74(\mathrm{~m}, 12 \mathrm{H})$. MALDI-ToF MS (m / z) : calculated for $\mathrm{C}_{164} \mathrm{H}_{232} \mathrm{~N}_{12} \mathrm{~S}_{10} \mathrm{Zn}$: $2753.50[\mathrm{M}]^{+}$; found 2753.46.

TP-Por-TP (22). Yield $=27 \%(13 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}\right), \delta(\mathrm{ppm}): 9.68(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H})$, $9.14(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.12$ $(d, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 4 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.40-0.95(\mathrm{br}, 256 \mathrm{H}), 0.91-0.85(\mathrm{~m}$, $30 \mathrm{H}), 0.75-0.62(\mathrm{~m}, 30 \mathrm{H})$. MALDI-ToF MS (m / z): calculated for $\mathrm{C}_{244} \mathrm{H}_{372} \mathrm{~N}_{8} \mathrm{~S}_{12} \mathrm{Zn}$: 3862.53 [M] ${ }^{+}$; found 3862.52.

General Sonogashira cross-coupling procedure for the D-A-D type porphyrins: A_{3} B-porphyrin 12 (2.2 equiv.) and the respective dibrominated acceptor molecule 17 or 18 (1 equiv.) were placed in a Schlenk flask and the flask was flushed three times with N_{2}, after which dry toluene (7.3 mM) and $\mathrm{dry}_{\mathrm{Et}}^{3} \mathrm{~N}(3.7$ $\mathrm{mM})$ were added. Then, the mixture was purged with N_{2} for 30 min . Afterwards, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.05$ equiv.) and Cul (0.05 equiv.) were added and the reaction was stirred overnight at $85^{\circ} \mathrm{C}$. Next morning, the reaction mixture was cooled down, water was added and extraction was done with CHCl_{3}. The organic solution was dried over MgSO_{4}, filtered and evaporated to dryness. Flash column chromatography (silica) was performed with $\mathrm{CHCl}_{3}:$ petroleum ether ($3: 1$), followed by prep-SEC to yield the product as a dark brown solid.

Scheme S6: Final Sonogashira cross-coupling reaction of mono-alkynated $A_{3} B$-porphyrin 12 and dibrominated acceptor molecules 17-18: i) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}, E t_{3} \mathrm{~N}$, toluene, $85{ }^{\circ} \mathrm{C}$.

Por-TQ-Por (23). Yield = 35\% (88 mg). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta(\mathrm{ppm}): 9.53(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 9.16$ (d, J = 4.4 Hz, 4H), $9.10(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 9.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.14(\mathrm{~s}, 4 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.75-7.60(\mathrm{br}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.60(\mathrm{br}, 2 \mathrm{H})$, $3.19(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 2.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 18 \mathrm{H}), 1.62-1.33$ $(\mathrm{m}, 48 \mathrm{H}), 1.33-1.07(\mathrm{~m}, 32 \mathrm{H}), 1.07-0.89(\mathrm{~m}, 18 \mathrm{H}), 0.78-0.72(\mathrm{~m}, 12 \mathrm{H})$. MALDI-ToF MS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{172} \mathrm{H}_{180} \mathrm{~N}_{12} \mathrm{~S}_{17} \mathrm{Zn}_{2}$: $3085\left[\mathrm{M}^{+}\right]$; found 3086 .

Por-TQ ${ }_{\mathrm{n}}$-Por (24). Yield $=45 \%(55 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta(\mathrm{ppm}): 10.31(\mathrm{~s}, 4 \mathrm{H}), 9.25(\mathrm{~d}, \mathrm{~J}=$ $4.6 \mathrm{~Hz}, 4 \mathrm{H}), 9.05(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.88(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.13(\mathrm{~s}, 4 \mathrm{H}), 7.67(\mathrm{~s}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H}), 7.32$ ($\mathrm{s}, 4 \mathrm{H}$) , $7.15(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 3.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.88(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 8 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 8 \mathrm{H}), 1.66-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 32 \mathrm{H}), 1.35-1.33$ $(\mathrm{m}, ~ 48 \mathrm{H}), 1.03-0.98(\mathrm{~m}, 18 \mathrm{H}), 0.78-0.70(\mathrm{~m}, 12 \mathrm{H})$. MALDI-ToF MS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{164} \mathrm{H}_{176} \mathrm{~N}_{12} \mathrm{~S}_{15} \mathrm{Zn}_{2}$: $2920.85\left[\mathrm{M}^{+}\right] ;$found 2920.89.
1.3. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR, and MALDI-ToF mass spectra

4-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-6,7-bis(5-(2-hexyldecyl)thiophen-2-yl)-9-(4-(2-octyldodecyl)thiophen-2-yl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (13)

Figure S1: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of compound 13.

4-(5-bromothiophen-2-yl)-6,7-bis(5-(2-hexyldecyl)thiophen-2-yl)-9-(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (14)

Figure S2: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of compound 14.

4-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-8-(4-(2-octyldodecyl)thiophen-2-yl)-1H,5H-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (15)

$\stackrel{\rightharpoonup}{\infty}$

$$
\begin{aligned}
& \stackrel{\text { N }}{\substack{\text { I } \\
\text { I }}}
\end{aligned}
$$

Figure S3: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of compound 15.

5-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-2,3-bis(5-(2-hexyldecyl)thiophen-2-yl)-7-(4-(2-octyldodecyl)thiophen-2-yl)thieno[3,4-b]pyrazine (16)

Figure S4: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of compound 16.

R $_{2}$ TQ-Por-TQR 2 (19)

Figure S5: ${ }^{1} \mathrm{H}-$ NMR and MALDI-ToF mass spectra of compound 19.

TQ-Por-TQ (20)

2600280030003200340036003800400042004400460048005000520054005600580060006200640066006800700072007400760078008000820084008600
Figure S6: ${ }^{1} \mathrm{H}-$ NMR and MALDI-ToF mass spectra of compound 20.

BBT-Por-BBT (21)

Figure S7: ${ }^{1} \mathrm{H}-$ NMR and MALDI-ToF mass spectra of compound 21.

TP-Por-TP (22)

Figure S8: ${ }^{1} \mathrm{H}-N M R$ and MALDI-ToF mass spectra of compound 22.

Por-TQ-Por (23)

Figure S9: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and MALDI-ToF mass spectra of compound 23.

Por-TQ ${ }_{n}$-Por (24)

Figure S10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and MALDI-ToF mass spectra of compound 24.

1.4. UV-VIS-NIR absorption spectra

Figure S11: UV-VIS-NIR absorption spectra of the six final porphyrin materials in solution $\left(\mathrm{CHCl}_{3}\right)$.

1.5. Cyclic voltammetry

Figure S12: Reduction (left) and oxidation (right) traces for the CV measurements of the six final porphyrin materials (as films in $\mathrm{MeCN}-\mathrm{NBu}_{4} P F_{6}$).

Table S1: Optical and electrochemical properties of all meso-ethynyl-extended porphyrin chromophores.

compound	$\lambda_{\max \text { VIS, }}$ film ${ }^{a}$ (nm)	$\lambda_{\max \operatorname{NIR},}$ $\text { film }^{a}(n m)$	$\begin{gathered} \hline E_{\text {red }^{b}} \\ (\mathrm{~V}) \end{gathered}$	$\begin{aligned} & E_{0 x}{ }^{b} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \hline E_{\text {Lumo }}{ }^{c} \\ (\mathrm{eV}) \end{gathered}$	Еномо ${ }^{\text {c }}$ (eV)	$\begin{gathered} E_{\mathrm{g}, \text { opt }^{\mathrm{d}}} \\ (\mathrm{eV}) \end{gathered}$
TP-Por-TP	494	786	-1.33	0.37	-3.58	-5.28	1.41
R_{2} TQ-Por-TQR ${ }_{2}$	503	919	-0.98	0.48	-3.93	-5.39	1.22
TQ-Por-TQ	507	929	-0.99	0.22	-3.92	-5.13	1.20
BBT-Por-BBT	507	986	-0.87	0.05	-4.04	-4.96	1.09
Por-TQ ${ }_{\text {n-Por }}$	457	873	-0.77	0.57	-4.13	-5.46	1.28
Por-TQ-Por	471	948	-0.87	0.29	-4.02	-5.19	1.14

${ }^{\text {a }}$ Films were prepared by drop casting from chloroform onto a glass substrate. ${ }^{\text {b }}$ Onset potentials vs Fc/Fc ${ }^{+}$. ${ }^{\text {c }}$ Determined from the onset of oxidation/reduction in cyclic voltammetry. ${ }^{\text {d Optical gap, determined from the }}$ onset of the solid-state VIS-NIR spectrum.

Section 2: Device characterization and optimization

2.1. Organic photodetector fabrication and characterization

Bulk heterojunction organic photodetectors were prepared using the inverted architecture glass/ITO/ZnO-PEIE/active layer/ $\mathrm{MoO}_{3} / \mathrm{Ag}$. Prior to device processing, the ITO-coated glass substrates (100 nm, Ossila, sheet resistivity $20 \Omega \mathrm{sq}^{-1}$) were thoroughly cleaned via sonication in soap water, demineralized water, acetone, and isopropanol, followed by a UV/O3 treatment for $30 \mathrm{~min} . \mathrm{ZnO}$ interlayers were spin-coated from a solution of $\mathrm{Zn}(\mathrm{OAc})_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~g}$, Merck) and ethanolamine (0.14 g, Merck) in 2-methoxyethanol (Merck). The ZnO layers were annealed at $300^{\circ} \mathrm{C}$ for 10 min to obtain a layer thickness of $\sim 30 \mathrm{~nm}$. PEIE interlayers were spin-coated from a solution of PEIE ($0.1 \mathrm{~mL}, 35-40$ $w t \%$ in $\mathrm{H}_{2} \mathrm{O}$; Merck) in isopropanol (35 mL). Further processing was performed under nitrogen atmosphere in a glove box ($<1 \mathrm{ppm} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$). The photoactive layer solution, consisting of the photoactive porphyrin molecule and $\mathrm{PC}_{71} \mathrm{BM}$ ($>99 \%$; Solenne), was then spin-coated according to the optimization protocol performed. The devices were prepared with a blend solution of 1:2 porphyrin: $\mathrm{PC}_{71} \mathrm{BM}$, with a total concentration of $36 \mathrm{mg} \mathrm{mL}^{-1}$ in chloroform, chlorobenzene (CB), or ortho-dichlorobenzene (ODCB) and different amounts of pyridine or 1,8-dioodooctane as solvent additive. The solutions were stirred overnight at $60^{\circ} \mathrm{C}$ to ensure complete dissolution. The active layer was deposited on top of the ZnO-PEIE layer by means of spin-coating at room temperature with an optimal layer thickness near 300 nm . Solvent vapor annealing was performed with different solvent (THF or CS_{2}) quantities (40,60 , and $80 \mu \mathrm{~L}$) and durations ($15,30,60$, and 120 s). Finally, the top electrodes $\mathrm{MoO}_{3}(10 \mathrm{~nm})$ and $\mathrm{Ag}(100 \mathrm{~nm})$ were deposited by vacuum deposition to afford photodetector devices with an active area of $3 \mathrm{~mm}^{2}$.

The J-V characteristics of all photodetectors in darkness were evaluated using a Keithley 2400 source meter. EQE measurements were performed using a homebuilt setup, combining a Newport Apex illuminator (100 W Quartz Tungsten Halogen lamp) as light source with a Newport Cornerstone 130° monochromator. The monochromated light was chopped at 123 Hz and the photocurrent was measured using a Stanford SR830 lock-in amplifier. A pyro-electric detector was employed as a reference cell.

AFM experiments were performed with a JPK NanoWizard 3 AFM (JPK Instruments AG, Berlin, Germany) using AC mode in air. Silicon ACTA-50 tips from AppNano with cantilever length $\sim 125 \mathrm{~mm}$, spring constant $\sim 40 \mathrm{~N} \mathrm{~m}^{-1}$ and resonance frequency $\sim 300 \mathrm{kHz}$ were used. The scan angle, set point height, gain values and scan rate were adjusted according to the calibration of the AFM tip.

Grazing incidence wide angle X-ray scattering was performed at the Stanford Synchrotron Radiation Light source on beamline 11-3, with an X-ray energy of 12.7 keV and an incidence angle of 0.1°. The sample to detector distance was 317.3 mm and calibrated to a polycrystalline LaB6 standard.

Measurements were performed in a helium chamber to minimize air scattering. All data was corrected for the geometric distortion of the flat detector used, normalized by exposure time, sample thickness, monitor counts, and analyzed using Nika 1D SAXS1 ${ }^{9}$ and WAXstools2 software in Igor Pro ${ }^{10}$.

Rise and fall time measurements were performed using a Thorlabs LED responding at 450 nm and driven by a Thorlabs LED high power driver DC2200. The photodetectors were connected to a Stanford Research Systems low-noise current preamplifier (model SR570) for which the signal was then sampled using an oscilloscope (model PicoScope 2000a).

2.2. Device optimization and characterization

At first, three different solvent systems were tested - chloroform, chlorobenzene (CB), and orthodichlorobenzene (ODCB) - for which the total concentration of TQ-Por-TQ and $\mathrm{PC}_{7_{1} \mathrm{BM}}(36 \mathrm{mg} / \mathrm{mL}$ in a ratio of 1:2) was kept constant. ${ }^{4}$ From current-voltage (I-V) measurements, shown in Figure S13, it could be concluded that all three solvent systems produced similar dark current densities (J_{D}) near 200 $\mathrm{nA} / \mathrm{cm}^{2}$, open-circuit voltages $\left(V_{\mathrm{OC}}\right)$ near 0.6 V and light current densities $\left(V_{\mathrm{ph}}\right.$, under 1 sun irradiation) near $4 \mathrm{~mA} / \mathrm{cm}^{2}$ at -2 V . However, chloroform gave the most consistent results. Besides, investigation of the external quantum efficiency (EQE at 0 V and -2 V bias, Figure S 13) revealed that the contribution in the NIR regime was highest for the devices prepared with chloroform as the casting solvent, reaching 7% and 15% at 900 nm at 0 and -2 V bias, respectively. The increased EQE in the visible part for the CB solvent system, for which $\mathrm{PC}_{71} \mathrm{BM}$ is responsible, is of minor importance as NIR OPDs are targeted. Due to the small differences observed with respect to the processing solvent for the TQ-Por-TQ based device and the similarity of the Por-TQ-Por donor molecule with the earlier prepared D-A-D porphyrin molecules (all processed from CB), ${ }^{4}$ further solvent optimization was not performed on these valuable materials.

Figure S13: $J-V$ curves and EQE spectra for the OPD devices based on the TQ-Por-TQ:PC ${ }_{71} B M$ (1:2) active layer blend as obtained during the solvent optimization process.

Both pyridine (Pyr) and 1,8-diiodooctane (DIO) were then used in various concentrations as solvent additives. Pyridine, known for its ability to coordinate to the zinc metal center of porphyrin molecules, reduces the stacking probability and possibly increases mixing with the fullerene acceptor. ${ }^{11}$ DIO is a high-boiling solvent additive often used to control the active layer morphology in bulk heterojunctions. ${ }^{12}$ Investigation of the J-V and EQE measurements of the TQ-Por-TQ based photodiodes (Figure S14) clarified that pyridine has a negative influence on both the light and dark current density and consequently on the EQE as well. However, a slight increase of the $V_{\text {OC }}$ to 0.64 V was observed. Contrary, DIO had no significant influence on J_{D}. Only when $3 \mathrm{v} / \mathrm{v} \%$ DIO was used, a slight increase was observed. In light conditions, DIO generally decreased the V_{OC} to 0.5 V and the J_{ph} to $1 \mathrm{~mA} / \mathrm{cm}^{2}$ at -2 V . An exception was observed for $1 \mathrm{v} / \mathrm{v} \%$ DIO, for which J_{ph} was positively influenced, reaching a value of $5 \mathrm{~mA} / \mathrm{cm}^{2}$. Besides, a red-shift in the EQE spectrum was obtained, reaching 6 and 10% (at 0 and -2 V bias, respectively) at 1000 nm . This red-shift could be the result of a more optimized layer morphology with an increased stacking behavior of the porphyrin molecules. In case of Por-TQPor, the addition of DIO had a negative effect, generally resulting in shorted devices (Figure S15). Pyridine on the other hand decreased the $V_{\text {OC }}$ from 0.60 to 0.44 V and produced a similar light and dark current density. A combination of Pyr and DIO (both in $1 \mathrm{v} / \mathrm{v} \%$) increased the light and dark current density by one order of magnitude accompanied with a slight $V_{\text {OC }}$ decrease to 0.53 V . For this device an EQE of 2% and 7% (at 0 and -2 V bias, respectively) at 1000 nm was obtained. For all solvent systems and additive concentrations, different spin-coating speeds were tested, but no significant differences were obtained.

Figure S14: J-V curves and EQE spectra for the OPD devices based on the TQ-Por-TQ:PC ${ }_{71} B M$ (1:2) active layer blend as obtained during the solvent additive optimization process.

Figure S15: J-V curves for the OPD devices based on the Por-TQ-Por:PC ${ }_{71} B M$ (1:2) active layer blend as obtained during the solvent additive optimization process. EQEs are not really relevant due to shorted devices and very low $J_{s c}$ values.

To further optimize the active layer morphology, solvent vapor annealing (SVA, setup shown in Figure S16) was applied. Variations in solvent quantity and SVA duration, shown in Table S2, positively influenced the $V_{\text {OC }}$ and the fill factor (FF) for the TQ-Por-TQ based device when using THF as a solvent. A downside of the SVA strategy was observed for the J_{D} of the devices, generally increasing and becoming very inconsistent. EQE measurements also revealed an increased contribution of $\mathrm{PC}_{71} \mathrm{BM}$ in the visible region. SVA on the Por-TQ-Por based devices was performed with three different solvents, i.e. THF, Pyr, and CS_{2} (Table S3). The overall performance decreased by treating with either THF or Pyr vapor, but increased for CS_{2}.

Figure S16: Solvent vapor annealing setup for post-fabrication modification of the active layer blend morphology.

Table S2: $V_{O C}, J_{S C}$, and FF values for the different conditions used during the solvent vapor annealing optimization for the TQ-Por-TQ:PC ${ }_{71} B M$ (1:2) photoactive layer blend. The solvent quantity (THF, in $\mu \mathrm{L}$) and duration (in seconds) were varied.

reference		$40 \mu \mathrm{~L}$				$60 \mu \mathrm{~L}$			
		15'	30^{\prime}	60^{\prime}	120'	15'	30^{\prime}	60^{\prime}	120'
$V_{\text {OC }}(\mathrm{V})$	0.44	0.25	0.46	0.6	0.59	0.60	0.45	0.38	0.21
$J_{\text {SC }}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	0.61	0.48	0.92	1.00	1.42	0.92	0.96	0.40	0.42
FF (\%)	0.35	0.28	0.39	0.47	0.52	0.61	0.32	0.34	0.22
reference		$80 \mu \mathrm{~L}$							
		15'	30'	60'	120'				
$V_{\text {OC }}(\mathrm{V})$	0.44	0.5	0.52	0.30	0.38				
$J_{\text {SC }}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	0.61	1.02	0.92	0.43	0.44				
FF (\%)	0.35	0.68	0.42	0.31	0.30				

Table S3: $V_{O C}, J_{S C}$, and FF values for the different conditions used during the solvent vapor annealing optimization for the Por-TQ-Por:PC ${ }_{71} B M$ (1:2) photoactive layer blend. The solvent quantity (THF or CS $_{2}$, in $\mu \mathrm{L}$) and duration (in seconds) were varied.

reference	$40 \mu \mathrm{LCS}_{2}$			$40 \mu \mathrm{~L} \mathrm{Pyr}$	$40 \mu \mathrm{~L}$ THF	
$\mathrm{CB} 1 \%$ DIO, 1% Pyr		30^{\prime}	40^{\prime}	50^{\prime}	40^{\prime}	40^{\prime}
$V_{\mathrm{OC}}(\mathrm{V})$	0.58	0.60	0.59	0.59	0.58	0.59
$J_{\mathrm{SC}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	0.84	1.96	1.37	2.23	0.30	0.37
$\mathrm{FF}(\%)$	0.28	0.33	0.29	0.33	0.29	0.29

Figure S17: J-V (single device) data for the $\mathbf{R}_{\mathbf{2}}$ TQ-Por-TQR2, BBT-Por-BBT, and Por-TQ \mathbf{n}_{n}-Por based OPD devices (blends with $P C_{71} B M$ in a 1:2 ratio).

Figure S18: AFM images for the optimized TQ-Por-TQ:PC ${ }_{71} B M$ based OPD device (left, deposition from CHCl_{3} without additive or SVA) and for the optimized Por-TQ-Por:PC ${ }_{71} B M$ based OPD device (right, deposition from chlorobenzene with $1 \mathrm{v} / \mathrm{v} \%$ DIO and Pyr and SVA with CS_{2}).

Figure S19: AFM images for the $\mathbf{R}_{\mathbf{2}} \mathbf{T Q}$-Por-TQR $\mathbf{R}_{\mathbf{2}}$ (left, deposition from CHCl_{3}) and BBT-Por-BBT based blends with $\mathrm{PC}_{71} \mathrm{BM}$ (right, deposition from CHCl_{3}).

Figure S20: 2D-GIWAXS patterns for Por-TQ-Por (top left) and TQ-Por-TQ (top right) blended in a 1:2 ratio with $P C_{71} B M$ and line profiles in the Q_{z} (bottom left) and $Q_{x y}$ (bottom right) scattering directions. The sharp lamellar stacking peak in Por-TQ-Por suggests ordered packing of crystallites, whereas the larger fraction of branched 2-hexyldecyl side chains on the TQ-Por-TQ moiety appears to introduce disorder along the lamellar direction. Note that the intensity scales of the 2D images are identical for comparison.

Figure S21: Rise (left) and fall (right) times for the optimized TQ-Por-TQ (top) and Por-TQ-Por (bottom) based OPD devices. The middle graphs show the light pulse train and device response on a 20 ms time interval.

Figure S22: Chemical structures of selected NFAs.

Figure S23: J-V curves and EQE spectra for the NFA optimization process (using TQ-Por-TQ as the donor). EQE spectra of several active layers were too noisy to allow an accurate measurement.

Figure S24: AFM image of the TQ-Por-TQ:Y6 blend.

Section 3: Synthesis and characterization of the precursors for strategy 2 and TII-Por-TII

3.1. Materials and methods

See section 1.1.
3.2. Synthesis and characterization of the precursors, the ethynyl-extended acceptor chromophores, and TII-Por-TII

All reagents and chemicals were obtained from commercial sources and used without further purification. Solvents were dried on a solvent purification system (MBraun, MB-SPS-800) equipped with alumina columns. All acceptor molecule cores were prepared via literature procedures; TII (thienoisoindigo), ${ }^{13}$ TQ (thiadiazolo[3,4-g]quinoxaline), ${ }^{7} \quad \mathrm{TP}$ (thieno[3,4-b]pyrazine), ${ }^{14}$ BBT (benzobisthiadiazole), ${ }^{15}$ and TTD (thienothiadiazole). ${ }^{14}$ Monobromination and the consecutive Sonogashira cross-coupling were performed via standard procedures explained below.

Figure S25: Overview of the intended acceptor molecules for the alternative Sonogashira cross-coupling reaction (strategy 2) on dibrominated $A_{2} B_{2}$-porphyrin precursor 7.

General monobromination procedure: The acceptor material was dissolved in CHCl_{3} and the solution was cooled down to $0{ }^{\circ} \mathrm{C}$ while stirring. Then, NBS (1 equiv.) was added portionwise and the mixture was stirred overnight, slowly heating up to room temperature. The solvents were removed and column chromatography (silica, $\mathrm{CHCl}_{3}:$ petroleum ether mixture) was performed to yield the pure product.

Scheme S7: Monobromination of the acceptor molecules: i) NBS (1 equiv), CHCl_{3}, RT .
(E)-2-bromo-4,4'-bis(2-octyldodecyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-5,5'(4H,4'H)-dione
(25).

Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:petroleum ether, $\left.30: 70\right)$ was performed to yield the pure product as
a purple oil. Yield $=23 \%(149 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.54(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.80(\mathrm{br}, 2 \mathrm{H}), 1.40-1.18$ (br, 64H), 0.88-0.83 (m, 12H).

4-(5-bromo-4-hexylthiophen-2-yl)-9-(4-hexylthiophen-2-yl)-6,7-di(thiophen-2-yl)-

[1,2,5]thiadiazolo[3,4-g]quinoxaline (26). Column chromatography (CHCl_{3} :petroleum ether, $5: 95$) was performed to yield the pure product as a purple solid. Yield $=33 \%(180 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{ppm}): 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55 (dd, $J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H})$, $2.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 6 H).

5-(5-bromothiophen-2-yl)-2,3,7-tri(thiophen-2-yl)thieno[3,4-b]pyrazine (27). The crude product was a mixture of starting material, mono- and dibrominated product. Column chromatography (CHCl_{3} :petroleum ether, $5: 95$) was performed. However, due to the limited solubility, the monobrominated product could not be completely purified.

4-(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-8-bis(4-(2-octyldodecyl)thiophen-2-yl)-1H,5H-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (15). See section 1.

4-(5-bromothiophen-2-yl)-6-(thiophen-2-yl)-1H,3H-thieno[3,4-c][1,2,5]thiadiazole (28). The crude product was a mixture of starting material, mono- and dibrominated product. Column chromatography $\left(\mathrm{CHCl}_{3}:\right.$ petroleum ether, $\left.25: 75\right)$ was performed. However, due to the limited solubility, the monobrominated product could not be completely purified.

Sonogashira cross-coupling procedure for the monofunctionalized acceptor materials: The monobrominated acceptor $\mathbf{1 5}, \mathbf{2 5}$, or $\mathbf{2 6}$ (1 equiv.) and trimethylsilylacetylene (5 equiv.) were placed in a Schlenk flask and flushed three times with N_{2}, after which dry THF (7.3 mM) and $\operatorname{dry~}^{\mathrm{Et}} \mathrm{H}_{3} \mathrm{~N}(3.7 \mathrm{mM})$ were added. Then, the mixture was purged with N_{2} for 30 min . Afterwards, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.05$ equiv.) and Cul (0.05 equiv.) were added and the reaction was stirred overnight. Next morning, the reaction mixture was cooled down, water was added and extraction was done with CHCl_{3}. The organic solution was dried over MgSO_{4}, filtered and evaporated to dryness. Flash column chromatography (silica) was performed, yielding the pure product.

Scheme S8: Sonogashira cross-coupling for the alkynation of the monofunctionalized acceptor molecules: i) TMS-acetylene, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, E t_{3} \mathrm{~N}, \mathrm{THF}, \mathrm{RT}$.
(E)-4,4'-bis(2-octyldodecyl)-2-((trimethylsilyl)ethynyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-

5,5'(4H,4'H)-dione (29). Column chromatography (CHCl_{3} :petroleum ether, $30: 70$) was performed to yield the pure product as a green solid. Yield $=73 \%(111 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.53$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.90-1.80(\mathrm{br}, 2 \mathrm{H}) 1.40-1.18(\mathrm{br}, 64 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 12 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H})$.

4-(4-hexyl-5-((trimethylsilyl)ethynyl)thiophen-2-yl)-9-(4-hexylthiophen-2-yl)-6,7-di(thiophen-2-

$y \mathrm{y}$) $[1,2,5]$ thiadiazolo[3,4-g]quinoxaline (30). Column chromatography (CHCl_{3} :petroleum ether, 40:60) was performed to yield the pure product as a purple solid. Yield $=75 \%(138 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, \mathrm{J}=5.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04$ $(\mathrm{m}, 2 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.31(\mathrm{~s}, 9 \mathrm{H})$.

4-(4-(2-octyldodecyl)-5-((trimethylsilyl)ethynyl)thiophen-2-yl)-8-(4-(2-octyldodecyl)thiophen-2-yl)-1H,5H-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (31). Column chromatography (hexanes: $\mathrm{CHCl}_{3}, 65: 35$) was performed to yield the pure product as a green solid. Yield $=81 \%(105 \mathrm{mg}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.81(\mathrm{br}, 1 \mathrm{H}), 1.78-1.70(\mathrm{br}, 1 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 64 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 12 \mathrm{H})$, 0.28 (s, 9H).

General TMS deprotection procedure for the monofunctionalized acceptor materials: The acceptor molecule 29, 30, or 31 (1 equiv.) was dissolved in THF (0.003 M) and the solution was cooled down to $0{ }^{\circ} \mathrm{C}$. Then, a solution of $\mathrm{KOH}\left(1.5\right.$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{M})$ was added and the mixture was stirred for 30 min . Afterwards, the reaction was continued for 2.5 h at room temperature. Upon completion, the reaction mixture was cooled down, water was added and extraction was done with CHCl_{3}. The organic solution was dried over MgSO_{4}, filtered and evaporated to dryness. Finally, flash column chromatography (silica) was performed.

Scheme S9: TMS deprotection of the monofunctionalized acceptor molecules: i) KOH (aq.), THF, RT.
(E)-2-ethynyl-4,4'-bis(2-octyldodecyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-5,5'(4H,4'H)-dione (32). Column chromatography $\left(\mathrm{CHCl}_{3}\right.$:hexanes, $50: 50$) was performed to yield the pure product as a purple solid. Yield $=18 \%(26 \mathrm{mg})$. The obtained product was, however, not stable. Therefore, column chromatography was not performed in the second run and the resulting product was used as such for the next step. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.55(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.80(\mathrm{br}, 2 \mathrm{H}) 1.40-1.18(\mathrm{br}, 64 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 12 \mathrm{H})$.

4-(5-ethynyl-4-hexylthiophen-2-yl)-9-(4-hexylthiophen-2-yl)-6,7-di(thiophen-2-yl)-
[1,2,5]thiadiazolo[3,4-g]quinoxaline (33). Due to degradation occurring during the reaction and/or purification, the target molecule could not be obtained.

4-(5-ethynyl-4-(2-octyldodecyl)thiophen-2-yl)-8-(4-(2-octyldodecyl)thiophen-2-yl)-1H,5H-benzo-

[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (34). Due to degradation occurring during the reaction and/or purification, the target molecule could not be obtained.

Sonogashira cross-coupling procedure toward TII-Por-TII (35). $\mathrm{A}_{2} \mathrm{~B}_{2}$-porphyrin precursor 7 (1 equiv.) and the mono-alkynated acceptor molecule 32 (2.2 equiv.) were placed in a Schlenk flask and the flask was flushed three times with N_{2}, after which dry toluene (7.3 mM) and $\mathrm{dry}_{\mathrm{Et}}^{3} \mathrm{~N}$ (3.7 mM) were added. Then, the mixture was purged with N_{2} for 30 min . Afterwards, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.05 equiv.) and $\mathrm{Cul}(0.05$ equiv.) were added and the reaction was stirred overnight at $85^{\circ} \mathrm{C}$. Next morning, the reaction mixture was cooled down, water was added and extraction was done with CHCl_{3}. The organic solution was dried over MgSO_{4}, filtered and evaporated to dryness. Flash column chromatography (silica) was performed with $\mathrm{CHCl}_{3}:$ petroleum ether (3:1). Further purification was not performed due to the multitude of reaction products obtained, as evidenced by MALDI-ToF mass spectrometry (Figure S26).

Scheme S10: Final Sonogashira cross-coupling yielding TII-Por-TII (35): i) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}, E t_{3} \mathrm{~N}$, toluene, $85{ }^{\circ} \mathrm{C}$.
3.3. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR, and MALDI-ToF mass spectra
(E)-2-bromo-4,4'-bis(2-octyldodecyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-5,5'(4H,4'H)-dione (25)

Figure S26: ${ }^{1} \mathrm{H}-\mathrm{NM}$ R spectrum of compound 25.
4-(5-bromo-4-hexylthiophen-2-yl)-9-(4-hexylthiophen-2-yl)-6,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (26)

Figure S27: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 26.
(E)-4,4'-bis(2-octyldodecyl)-2-((trimethylsilyl)ethynyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-5,5'(4H,4'H)-dione (29)

Figure S28: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 29.
4-(4-hexyl-5-((trimethylsilyl)ethynyl)thiophen-2-yl)-9-(4-hexylthiophen-2-yl)-6,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (30)

Figure S29: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 30.

4-(4-(2-octyldodecyl)-5-((trimethylsilyl)ethynyl)thiophen-2-yl)-8-(4-(2-octyldodecyl)thiophen-2-yl)-1H,5H-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (31)

Figure S30: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 31.
(E)-2-ethynyl-4,4'-bis(2-octyldodecyl)-[6,6'-bithieno[3,2-b]pyrrolylidene]-5,5'(4H,4'H)-dione (32)

Figure S31: ${ }^{1} H-N M R$ spectrum of the alkynated thienoisoindigo 32 after deprotection (without purification).

Figure S32: MALDI-ToF mass spectrum of the crude product resulting from the Sonogashira crosscoupling reaction of porphyrin $\mathbf{7}$ and alkynated TII 32. Plausible molecular structures are shown for the different masses observed.

References

1 S. Trasatti, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 209, 417.
2 A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, Wiley, 2000.
3 K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T. P. Russell, H. Wu, X. Peng, Advanced Materials, 2016, 28, 4727.
4 V. Cuesta, R. Singhal, P. de la Cruz, G. D. Sharma, F. Langa, ACS Applied Materials \& Interfaces, 2019, 11, 7216.
5 J. Fan, J. D. Yuen, M. Wang, J. Seifter, J.-H. Seo, A. R. Mohebbi, D. Zakhidov, A. Heeger, F. Wudl, Advanced Materials, 2012, 24, 2186.
6 M. Karikomi, C. Kitamura, S. Tanaka, Y. Yamashita, Journal of the American Chemical Society, 1995, 117, 6791.
7 F. Verstraeten, S. Gielen, P. Verstappen, J. Raymakers, H. Penxten, L. Lutsen, K. Vandewal, W. Maes, Journal of Materials Chemistry C, 2020, 8, 10098.
8 S. Gielen, C. Kaiser, F. Verstraeten, J. Kublitski, J. Benduhn, D. Spoltore, P. Verstappen, W. Maes, P. Meredith, A. Armin, K. Vandewal, Advanced Materials, 2020, 32, 2003818.

9 J. llavsky, J. Appl. Cryst., 2012, 45, 324.
10 S. Oosterhout, V. Savikhin, J. Zhang, Y. Zhang, M. Burgers, S. Marder, G. Bazan, M. Toney, Chem. Mater., 2017, 29, 3062.
11 J. Kesters, P. Verstappen, M. Kelchtermans, L. Lutsen, D. Vanderzande, W. Maes, Advanced Energy Materials, 2015, 5, 1500218.
12 A. K. K. Kyaw, D. H. Wang, C. Luo, Y. Cao, T.-Q. Nguyen, G. C. Bazan, A. J. Heeger, Advanced Energy Materials, 2014, 4, 1301469.
13 G. W. P. Van Pruissen, F. Gholamrezaie, M. M. Wienk, R. A. J. Janssen, Journal of Materials Chemistry, 2012, 22, 20387.
14 M. C. Ruiz Delgado, V. Hernández, J. T. López Navarrete, S. Tanaka, Y. Yamashita, The Journal of Physical Chemistry B, 2004, 108, 2516.
15 M. L. Keshtov, L. Toppare, D. V. Marochkin, V. S. Kochurov, D. Y. Parashchuk, V. A. Trukhanov, A. R. Khokhlov, Polymer Science Series B, 2013, 55, 360.

