Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Enhanced energy storage properties of Hafnium-modified (0.7Ba_{0.55}Sr_{0.45}-0.3Bi_{0.5}Na_{0.5})TiO₃-based relaxor ferroelectric ceramics via regulating polarization nonlinearity and bandgap

Fan Yang^{a,c}, Yizheng Bao^a, Wei Huang^{a,c,d}, Xin Li^a, Ying Chen^{a,c,*}, and Genshui Wang^{a,b,c,*}

^a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China.

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road,

Shanghai 200050, People's Republic of China

^c Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, People's Republic of China

^d School of Physical Science and Technology, ShanghaiTech University, Shanghai 200050,

People's Republic of China

*Corresponding authors:

Prof. Genshui Wang, and Prof. Ying Chen

E-mail: genshuiwang@mail.sic.ac.cn, and chenying@mail.sic.ac.cn

Fig. S1 The SEM micrographs of the polished and thermal-etched surfaces: (a) x=0, (b) x=0.05, (c)

x=0.10, (d) x=0.15, (e) x=0.20.

Fig. S2 Refinement XRD patterns of BSBNTH ceramics: (a) x=0, (b) x=0.05, (c) x=0.10, (d) x=0.15, (e) x=0.20; (f) The lattice constant and unit cell volume as functions of Hf content.

Fig. S3 (a) Dark-field TEM image; The SAED spots along (b) [001] and (c) [112] for BSBNTH-15 ceramics.

Fig. S4 The evolution of the (a) wavenumber and (b) intensity ration of the C_1 and C_2 as a function of Hf content in BSBNTH ceramics.

Fig. S5 (a) The peak positions of Raman spectra from -95 °C to 165 °C for x=0.15 samples; the variance of wavenumber and full width at half maximum (FWHM) with increasing temperature for (b) B₂, (c) C₁, and (d) C₂ Raman vibration modes.

Fig. S6 $\ln(1/\varepsilon - 1/\varepsilon_m)$ versus $\ln(T-T_m)$ for BSBNTH ceramics: (a) x=0.05, (b) x=0.10, (c) x=0.15, (d)

x=0.20.

Table S1

The relative dielectric constant and dielectric loss of BSBNTH ceramics measured at 25 °C and 1

kHz.

25 °C,1 kHz	x=0	x=0.05	x=0.10	x=0.15	x=0.20
ε _r	3427	2218	1505	1019	754
tan ð	0.05227	0.00492	0.00229	0.00131	0.00124

Table S2

The value of R and C is interpreted on an equivalent circuit with a parallel resistance capacitance

(RC) element.

650°C	x=0	x=0.05	x=0.10	x=0.15	x=0.20
R (Ω)	10991	20439	33275	34612	55363
C (F)	5.51×10 ⁻¹⁰	5.79×10 ⁻¹⁰	4.83×10 ⁻¹⁰	4.18×10 ⁻¹⁰	3.74×10 ⁻¹⁰

Compounds	E (kV/cm)	W _{rec} (J/cm ³)	η (%)	ref
0.87BT-0.13Bi(Zn _{2/3} (Nb,Ta) _{1/3}) O ₃	218	1.44	92.5	[17]
$0.88 (Ba_{0.8} Sr_{0.2}) TiO_3 - 0.12 Bi (Zn_{2/3} Nb_{1/3})O_3$	225	1.62	99.8	[60]
0.88BT-0.12Bi(Li _{0.5} Nb _{0.5})O ₃	270	2.03	88.0	[58]
0.9BT-0.1Bi(Li _{0.5} Ta _{0.5})O ₃	280	2.2	88.0	[59]
0.85BT-0.15Bi(Zn _{1/2} Sn _{1/2})O ₃	280	2.41	91.6	[12]
$0.85BT-0.15Bi(Mg_{0.5}Zr_{0.5})O_3$	280	2.9	86.8	[56]
0.9Ba _{0.65} Sr _{0.35} TiO ₃ -0.1BMN	400	3.34	85.7	[57]
BaTiO				
?				
-Bi(Mg				

?.?

Zr

?.?

)0

?

BaTiO	345	3.41	85.1	[61]
?				
-Bi(Mg				

?.?

Zr

?.?

)0

?

BaTiO ₃ -Bi(Mg _{0.5} Zr _{0.5})O ₃ @SiO ₂				
$0.65(Ba_{0.98}Li_{0.04})Ti_{0.98}O_3 - 0.35(Sr_{0.7}Bi_{0.2})TiO$	410	3.54	77.0	[54]
0.65BT-0.35(SBT-BMZ)	370	4.03	96.2	[53]
0.6(Ba _{0.75} Sr _{0.25})TiO ₃ -0.4Bi(Mg _{0.5} Hf _{0.5})O ₃	390	4.3	92.0	[14]
0.6BT-0.4Bi(Mg _{0.5} Ti _{0.5})O ₃	340	4.49	93.0	[16]
BT-0.06Bi _{2/3} (Mg _{1/3} Nb _{2/3})O ₃	520	4.55	91.0	[15]
$(Ba_{0.65}Sr_{0.245}Bi_{0.07})_{0.99}Nd_{0.01}TiO_3$	460	4.2	76.0	[55]
This moule	460	5.23	89.7	
1 nis work	481	5.47	90.6	

Table S3

Energy storage properties of BT-based ceramics

Fig S7 Unipolar P–E loops of the BSBNTH ceramics at different electric fields: (a) x=0.05, (b) x=0.10, (c) x=0.15, (d) x=0.20.

Fig. S8 Temperature-dependent W_{rec} and η of the x = 0.15 sample and recently reported lead-free ceramics (BT: BaTiO₃, BF: BiFeO₃, BNT: Bi_{0.5}Na_{0.5}TiO₃, NN: NaNbO₃, and AN: AgNbO₃).

Fig. S9 XPS data of Ti 2p for BSBNTH ceramics: (a) x=0.05, (b) x=0.10, (c) x=0.15, (d) x=0.20.

Fig. S10 Combined Z'' and M'' spectroscopic plots for BSBNTH ceramics: (a) x=0, (b) x=0.05, (c)

x=0.10, (d) x=0.20.