Supplementary Materials for

Enhanced photo-response performance of Cu₂O-based graded heterojunction optoelectronic devices with Ga₂O₃ buffer layer

Meng Xiao^{1, 2}, Kailian Dong^{1, 2}, Jiwei Liang^{1, 2}, Jin He^{1*} and Guojia Fang^{1, 2*}

¹ Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China,

School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China

² Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, China

*Corresponding authors.

E-mail addresses:

gjfang@whu.edu.cn (G.J. Fang), jin.he@whu.edu.cn

Figure S1. The AFM 3D images of various Ga_2O_3 films deposited on ITO glass with different oxygen pressure. a)10⁻⁴ Pa, b)1 Pa, c)5 Pa, and d)20 Pa.

Figure S2. Top-view SEM images of Ga_2O_3 films deposited at various oxygen pressure.

Figure S3. KPFM image of a HOPG flake.

Figure S4. a) Absorption spectra b) X-ray diffraction spectra of Cu_2O films deposited at various oxygen pressure.

Figure S5. Current density-voltage curves measured under an AM 1.5G solar simulator of the photovoltaic device architectures of ITO/Ga₂O₃/Cu₂O/Au using various oxygen pressure prepared Ga₂O₃.

Figure S6. Current-voltage characteristics for electrical conductance comparison of devices with a structure of In/Ga₂O₃/In using various oxygen pressure prepared Ga₂O₃.

Figure S7. Current density-voltage curves measured under an AM 1.5G solar simulator of the various device architectures. (ITO/ZnO/Cu₂O/Au; ITO/Ga₂O₃/Cu₂O/Au; ITO/ZnO/Ga₂O₃/Cu₂O/Au)

Figure S8. The electronic band alignment of the $ITO/ZnO/Cu_2O$ and $ITO/ZnO/Ga_2O_3/Cu_2O$ heterojunction, showing a stepped arrangement by incorporating PLD Ga_2O_3.

Figure S9. a-c) The temporal photoresponse of devices with structure of $ITO/Ga_2O_3/Cu_2O/Au$ at 0 bias voltage, during multiples dark/light cycles of approximately 2.5 s. Ga_2O_3 films were deposited at different oxygen pressure.

	$Jsc (mA cm^{-2})$	Voc (V)	FF	PCE (%)
ZnO/ Cu ₂ O	2.88	0.31	0.426	0.38
Ga ₂ O ₃ /Cu ₂ O	4.13	0.35	0.456	0.66
ZnO /Ga ₂ O ₃ / Cu ₂ O	4.99	0.34	0.554	0.94

Table S1. Parameters of the solar cells fabricated with different architectures.

Table S2. Electrical properties of Cu₂O prepared on glass at various oxygen pressure.

Pressure (Pa)	Hall Mobility (cm ² V ⁻¹ s ⁻¹)	Carrier Density (cm ⁻³)
0.1	3.84*10-1	2.31*10 ¹⁸
0.5	4.04*10-1	8.84*1017
1	$1.31^{*}10^{0}$	2.22*10 ¹⁶
1.5	9.57*10-1	8.52*1015