Supplementary Materials

Visible to Near-Infrared Nanocrystalline Organic Photodetector with Ultrafast Photoresponse

Wenzhan Xu^{a,b},[#], Yu Gao^{a,b,#}, Kun Qian^c, Bingzhe Wang^d, Rongguo Xu^f, Miao He^{a,b}, Tao Li^{c,e}, Guichuan Xing^d, Shihe Yang^f and Guodan Wei^{a,b,*}

^a Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen,

518055, China; E-mail: weiguodan@sz.tsinghua.edu.cn

^b Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China

^c Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States

^d Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China

^e X-ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States

^f School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China [#]W. Xu and Y. Gao are equally contributed to this work.

	850 nm	<i>R</i> (0 V)	R (-0.5 V)	$R_{\sqrt{A}}$	R_{γ}/\overline{A}	R_{λ}/\overline{A}	R_{λ}/\overline{A}
((mW/cm ²)	(mA/W)	(mA/W)	$D^*(\sqrt{i_{noise}})$	$D^* (\sqrt[]{i_{noise}})$	$D^*(\sqrt[n]{i_{noise}})$	$D^*(\sqrt{i_{noise}})$
				(0 V, 10 Hz)	(0 V, 10 ⁵ Hz)	(-0.5 V, 10 Hz)	(-0.5 V, 10 ⁵ Hz)
				(Jones)	(Jones)	(Jones)	(Jones)
	0.0005	680	1209	6.80×10 ¹⁰	1.69×10 ¹³	6.54×10 ¹⁰	6.59×10 ¹²
	0.005	558	875	5.58×10 ¹⁰	1.22×10 ¹³	4.73×10 ¹⁰	4.77×10 ¹²
	0.05	535	723	5.35×10 ¹⁰	1.02×10 ¹³	3.96×10 ¹⁰	3.99×10 ¹²

Table s1 Detectivity of OPD measured under the illumination of monochromatic light at a wavelength (λ) of 850 nm) with light intensity of 0.0005, 0.005 and 0.05 mW/cm² based on the noise current density.

Active Layer	<i>R</i> (mA W ⁻¹)	D* (Jones)	J_d (A cm ⁻²)	Ref.
PFT-OEHp:Y6	500 (-0.1 V)	1.16 x 10 ¹³ (-0.1 V)	5.81 x 10 ⁻⁹ (-0.1 V)	1
NT812:Y6 (1:4)	N/A	1.2 x 10 ¹³ (-0.1 V)	1.00 x 10 ⁻⁹ (-0.1 V)	2
PM6:Y6/P3HT:PC71BM	8.8(10 V)	6.8 x 10 ¹² (10 V)	N/A	3
D18:Y6 (1:1.6)	680 (0 V)	6.35 x 10 ¹³ (0 V)	1.28 x 10 ⁻⁹ (0 V)	This work

Table s2 A summary of the detail performance parameters of OPD based Y6 acceptor

Organic materials	Binding	Ref.			
	Energy (eV)				
Alq3 1.4		I. Knupler, H. Pelsert, I. Schwieger: Phys. Rev. B 65, 035 204 (2002)			
α -NPD 1.0		I.G. Hill, A. Kahn, Z.G. Soos, R.A. Pascal Jr.: Chem. Phys. Lett. 327 , $181 (2000)$			
Anthracene 1.0		B. Schweitzer, H. Bässler: Synth. Met. 109, 1 (2000)			
PTCDA 0.8		C.I. Wu, Y. Hirose, H. Sirringhaus, A. Kahn: Chem. Phys. Lett. 272, 43 (1997)			
CuPc	0.6	I.G. Hill, A. Kahn, Z.G. Soos, R.A. Pascal Jr.: Chem. Phys. Lett. 327, 181 (2000)			
α-6Τ 0.4		L.M. Blinov, S.P. Palto, G. Ruani, C. Taliani, A.A. Tevosov, S.G. Yudin, R. Zamboni: Chem. Phys. Lett. 232, 401 (1995)			
Alkoxy-PPV	0.36	S.F. Alvarado, P.F. Seidler, D.G. Lidzey, D.D.C. Bradley: Phys. Rev. Lett. 81, 1082 (1998)			
PFO	0.3	S.F. Alvarado, P.F. Seidler, D.G. Lidzey, D.D.C. Bradley: Phys. Rev. Lett. 81, 1082 (1998)			
PPPV	0.4	R. Kersting, U. Lemmer, M. Deussen, R.F. Marth, H. Kurz, V.I. Arkhipov, H. Bässler, E.O. Göbel: Phys. Rev. Lett. 73, 1440 (1994)			
DO-PPP	0.2	Y. Yang, Q. Pei, A.J. Heeger: Synth. Met. 78, 263 (1996)			
РТ	0.6	M. Liess, S. Jeglinski, Z.V. Vardeny, M. Ozaki, K. Yoshino, Y. Ding, T. Barton: Phys. Rev. B 56, 15 712 (1997)			
РА	0.5	M. Liess, S. Jeglinski, Z.V. Vardeny, M. Ozaki, K. Yoshino, Y. Ding, T. Barton: Phys. Rev. B 56, 15 712 (1997)			
PDA	0.5	G. Weiser: Phys. Rev. B 45, 14 076 (1992)			
C ₆₀	1.4	P.A. Brühwiler, A.J. Maxwell, A. Nilsson, N. Martensson, O. Gunnarsson: Phys. Rev. B 48, 18 296 (1993)			
C ₇₀	1.0	M. Knupfer, D.M. Poirier, J.H. Weaver: Phys. Rev. B 49, 2281 (1994)			
Napthalene	1.67	H. Du, RC.A. Fuh, J. Li, L.A. Corkan, J.S. Lindsey, Photochemistry and Photobiology 68 (1998) 141.			
Tetracene	0.81	T. Sakurai, S. Hayakawa, Japanese Journal of Applied Physics 13 (1974) 1733			
Pentacene	0.55	K. Kim, Y.K. Yoon, M.O. Mun, S.P. Park, S.S. Kim, S. Im, J.H. Kim, Journal of Superconductivity 15 (2002) 595–598.			
Hexacene	0.51	H. Angliker, E. Rommel, J. Wirz, Chemical Physics Letters 87 (1982) 208			
Pyrene	0.73	H. Du, RC.A. Fuh, J. Li, L.A. Corkan, J.S. Lindsey, Photochemistry and Photobiology 68 (1998) 141			
Chrysene	1.15	B. Jaeckel, J. Sambur, B.A. Parkinson, The Journal of Physical Chemistry C 113 (2009) 1837			
mPtcdi	0.58	A.J. Ferguson, T.S. Jones, Journal of Physical Chemistry B 110 (2006) 6891			
F12BBL6	0.43	S. Kraner, R. Scholz, C. Koerner, K. Leo, The Journal of Physical Chemistry C 2015, 119, 22820-22825			
BBL3-h-F12BBL3	0.24	S. Kraner, R. Scholz, C. Koerner, K. Leo, The Journal of Physical Chemistry C 2015, 119, 22820-22825			
BBL3-π-F12BBL3	0.48	S. Kraner, R. Scholz, C. Koerner, K. Leo, The Journal of Physical Chemistry C 2015, 119, 22820-22825			
INIC	1.79	L. Zhu, Y. Yi, Z. Wei, The Journal of Physical Chemistry C 2018, 122, 22309- 22316			
ITIC	1.84	L. Zhu, Y. Yi, Z. Wei, The Journal of Physical Chemistry C 2018, 122, 22309- 22316			
PC ₇₁ BM	2.73	L. Zhu, Y. Yi, Z. Wei, The Journal of Physical Chemistry C 2018, 122, 22309- 22316			
PC ₆₁ BM	2.90	L. Zhu, Y. Yi, Z. Wei, The Journal of Physical Chemistry C 2018, 122, 22309- 22316			
4TIC	0.04	L. Zhu, Z. Tu, Y. Yi, Z. Wei, The Journal of Physical Chemistry Lett 2019, 10, 4888-4894			
COi7IC	0.25	L. Zhu, Z. Tu, Y. Yi, Z. Wei, The Journal of Physical Chemistry Lett 2019, 10, 4888-4894			
Y6	-0.11-0.15	L. Zhu, J. Zhang, Y. Guo, C. Yang, Y. Yi, Z. Wei, Angew. Chem. Int. Ed. 2021, 60 15348-15353.			

TT 11 3 4	C	• • •	1 • 1•	C	•	
Table St A	summary of	exciton	hinding ene	erov of o	roanic m	aterials
1 4010 50 11	Summing of	enercon	omani _s one	ng, or or	guine m	aterials

Films	D18:Y6			
Time (ps)	$ au_1$	$ au_2$	τ ₃	
590 nm	0.88	14	1097	
850 nm	0.86	58	1258	

Table s4 Three kinetic components of D18:Y6 thin film at 590 nm and 850 nm by TAS.

Fig. s1 The SEM image of D18 (a and d), Y6 (b and e) and D18:Y6 (c and f) thin film.

Fig. s2 The AFM image of D18 (a and d), Y6 (b and e) and D18:Y6 (c and f) thin film.

Fig. s3 The I-V curves of PD dependence at 780 nm on power density

Fig. s4 a The corrected femtosecond TA spectroscopy of D18 film at selected probe delay times. **b** The corrected femtosecond TA spectroscopy of Y6 film at selected probe delay times. **c** TA spectra as a function of delay time for D18:Y6 film at 590 nm.

Fig. s6 a The time resolved photoluminescence spectra of D18 film. **b** The time resolved photoluminescence spectra of Y6 film. **c** The time resolved photoluminescence spectra of D18: Y6 film at probed wavelength of 630 nm.

Fig. s7 The χ scattering profiles of D18, Y6 and D18:Y6.

Figure s8 (a) The corresponding energy level alignment of various thin films and charge carrier transport/extraction process. (b) Illustration for the lamellar packing, π - π stacking, and molecular orientation.

Reference

- Zhong, Z.; Peng, F.; Huang, Z.; Ying, L.; Yu, G.; Huang, F.; Cao, Y. ACS Appl. Mater. Interfaces 2020, 12, (40), 45092-45100.
- Xie, B.; Xie, R.; Zhang, K.; Yin, Q.; Hu, Z.; Yu, G.; Huang, F.; Cao, Y. Nat. Commun. 2020, 11, (1), 2871.
- Zhao, Z.; Wang, J.; Xu, C.; Yang, K.; Zhao, F.; Wang, K.; Zhang, X.; Zhang, F. J. Phys. Chem. Lett. 2020, 11, (2), 366-373.