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S1. Preparation of the test sample and the reference sample 

A. Preparation of the test sample 

The surface of a coverslip is modified for 30s by the plasma cleaning, and then the aqueous solution 
of silver nanowires (NWs) is dripped onto the surface of the coverslip. Stand the sample in the air for 
3~5min, rinse it with pure water for several times and blow it dry with N2 gas. Thus the silver NWs are 
adsorbed on the glass substrate. Modify the sample by plasma cleaning again for 10~15s, making the 
glass surface and silver NWs negatively charged. Then the aqueous solution of Poly 
(diallyldimethylammonium chloride) (PDDA) is dripped onto the sample surface. Stand the sample in 
the air for 10min, rinse it with pure water for several times and blow it dry with N2 gas. Thus the first 
layer of cationic polyelectrolyte (PE) is adsorbed on the surface. Then the aqueous solution of poly 
(sodium 4-styrenesulfonate) (PSS) is dripped onto the sample surface. Stand the sample in the air for 
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source is shown in Fig. S6. The physical meanings of the three emission channels have been discussed 
in Section 3.2A of the main text. In Fig. S6, the blue rectangle represents a closed surface A (2L in 
length, near the point source), which contains the point source and part of the silver NW. The emission 
of the point source satisfies the energy conservation law of the electromagnetic field, 

* * 2
total 0 total total total

1 1 1
Re ( ) Re( ) | |

2 2 2
E r p E H n E

A V
da dvωε ′′ − ⋅ = × ⋅ +    ,           (S1) 

where Etotal and Htotal are the electric and magnetic field vectors excited by the point source, 
respectively, n is the outward normal unit vector on surface A, V is the region enclosed by A, ε ′′ is the 

imaginary part of the permittivity of the materials in region V, ω=k0c is the angular frequency, and c is 
the speed of light in the vacuum. The term on the left side of Eq. (S1) represents the total emission 
power (i.e., the total spontaneous emission rate, denoted by ΓT) of the point source, and the first and 
second terms on the right side represent the energy flux out of A and the ohmic loss in V, respectively. 

The first term on the right side of Eq. (S1) consists of two parts: one part is the emission into the 
surrounding homogeneous medium (that is, the far-field emission rate, denoted by Γrad, shown by the 
purple arrows in Fig. S6), and the other part is the coupling to the two bounded and propagative SPP 
modes on the silver NW [see Fig. 3(c), (d1)-(d2) in the main text], that is, 

* 1 2 2 2
total total rad 0 eff SPP1 0 eff SPP2

1
Re( ) |exp( )| |exp( )|

2
E H n

A
da ik n L ik n L× ⋅ = Γ + Γ + Γ ,       (S2) 

where the factor 2
0 eff|exp( )|iik n L  (i=1, 2) originates from the propagation loss experienced by the SPP 

mode i that propagates from the position of the point source to surface A. The definitions and 

calculation methods of eff
in  and ΓSPPi (i=1, 2) are given in Section 3.2B of the main text. From Eq. 

(S2), we can obtain the definition of Γrad as, 

* 1 2 2 2
rad total total 0 eff SPP1 0 eff SPP2

1
Re( ) |exp( )| |exp( )|

2
E H n

A
da ik n L ik n LΓ = × ⋅ − Γ − Γ .       (S3) 

The second term on the right side of Eq. (S1) represents the ohmic loss introduced by the metal 
inside the closed surface A, which consists of two parts: one part is the ohmic loss induced by the metal 
adjacent to the point source (that is, the loss rate, denoted by Γloss, shown by the yellow wavy line in 
Fig. S6), and the other part is the propagation loss of the two fundamental bounded and propagative 
SPP modes that propagate over a distance L, that is, 

2 1 2 2 2
total loss 0 eff SPP1 0 eff SPP2

1 2 2 2
loss SPP 0 eff SPP1 0 eff SPP2

1
| | [1 |exp( )| ] [1 |exp( )| ]

2

                               [ |exp( )| |exp( )| ],

E
V

dv ik n L ik n L

ik n L ik n L

ωε ′′ = Γ + − Γ + − Γ

= Γ + Γ − Γ − Γ

        (S4) 

with ΓSPP=ΓSPP1+ΓSPP2 [see this before Eq. (2) in the main text]. ΓSPP is the coupling rate/power of the 

two bounded and propagative SPP modes on the cross-section where the point source is located, as 
indicated by the red solid and dashed arrows in Fig. S6. From Eq. (S4), we can obtain the definition of 
Γloss as 

2 1 2 2 2
loss total SPP 0 eff SPP1 0 eff SPP2

1
| | [ |exp( )| |exp( )| ]

2
E

V
dv ik n L ik n Lωε′′Γ = − Γ − Γ − Γ .       (S5) 

Equation (S5) shows that Γloss does not contain the propagation loss of SPPs on the NW [that is, the 
terms in the square bracket on the right side of Eq. (S5)], which depends on the propagation distance L 
and is instead included in ΓSPP. Substituting Eqs. (S2) and (S4) into the right side of Eq. (S1), it can be 
proved that ΓT, Γrad, ΓSPP and Γloss satisfy an energy-conservation relation, 

ΓT=Γrad+ΓSPP+Γloss.          (S6) 

The dependence of ΓSPP on the distance d from the point source to the surface of the NW is shown in 
Fig. S7(a), which indicates that ΓSPP of the radially polarized point source is significantly higher than 
that of the axially and azimuthally polarized point sources. Figure S7(b) shows the coupling rates ΓSPP1 
(solid curve) and ΓSPP2 (dashed curve) of SPP modes 1 and 2 ( ΓSPP=ΓSPP1+ΓSPP2) for the radially 

polarized point source, which are plotted as functions of d. For the point sources with different 
polarization directions, the dependences of Γrad and Γloss on d are shown in Fig. S7(c)-(d). 
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Substituting Eq. (S11) into Eq. (S10), one can obtain 
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2 ( ) 2 ( ) 2 ( ) ( ) ( ) ( ) (
R R R

1
Re( )

2
1

Re[ ( ) ( ) ( )]
2

1
Re(

2

p z

z z z

z

E p E p E pz

z z z z z z z

z z z z z

p p p

p p E p E p E p p E p E p E p p E p E p E

p p p p p E p p E p p E p p E

ρ φ

ρ ρ ρ φ φ φ ρ ρ φ φ ρ ρ φ φ

ρ φ ρ φ φ ρ φ ρ ρ φ

Γ = − ⋅ + ⋅ + ⋅

= − + + + + + + + +

= Γ + Γ + Γ − + + +

ρ φ

ρ ρ ρ φ φ φ

ρ φ ρ ρ φ ) ( ) ( ) ).z z
z zp p E p p Eρ ρ φ φ+ +φ

 

(S12) 
In Eq. (S12), the r0-dependence is omitted in all electric-field terms to simplify the symbols. Equation 

(S12) gives the relation between the total spontaneous emission rate 
( )
T
pΓ  of a point source with an 

arbitrary linear-polarization direction and those ( ) ( ) ( )
T T T( , , )zΓ Γ Γρ φ  of point sources polarized along the 

directions of three orthogonal basis vectors (ρ, ϕ, z). In the coupling system of a point source and a 
silver NW of infinite length, as shown in Fig. S9, there is ( ) ( ) ( ) ( ) ( ) ( ) 0z z

z zE E E E E Eφ ρ ρ φ= = = = = =ρ ρ φ φ  

(r0-dependence is omitted) from the symmetry of the electromagnetic field. Then, Eq. (S12) reduces to 
( ) ( ) ( ) ( )2 2 2
T T T T
p z

zp p pΓ = Γ + Γ + Γρ φ
ρ φ

.                        (S13) 

From Eq. (S13), we can obtain 
( )( ) ( ) ( ) ( ) ( ) ( )

T T T T T T Tmin( , , ) max( , , )
pz zΓ Γ Γ ≤ Γ ≤ Γ Γ Γρ φ ρ φ ,                 (S14) 

where ( ) ( ) ( )
T T Tmin( , , )zΓ Γ Γρ φ  and ( ) ( ) ( )

T T Tmax( , , )zΓ Γ Γρ φ  denote the minimum and maximum values of
( ) ( ) ( )
T T T( , , )zΓ Γ Γρ φ , respectively. 

F. Impact of the length and dimeter of silver nanowire on the fluorescence lifetime of molecules 

 
Fig. S10 Dependence of the fluorescence lifetime τ of A647 molecules on the length LNW (a) and diameter D (b) of 
the silver NW based on Eq. (1) in the main text. In (a), D=90nm and the distances from the point source to both 
ends of the NW are equal. In (b), the length of the silver NW is infinite. The horizontal black-dashed line in (a) 
show the τ for a silver NW with an infinite length (LNW→∞). In (a) and (b), the point source is radially polarized, 
with a distance d=25nm to the surface of the NW. The results are obtained with the FEM. 

As shown in Fig. S10(a), the fluorescence lifetime τ [given by Eq. (1) in the main text] of molecules 
oscillates quasi-periodically with the increase of length LNW of the silver NW. This oscillation results 
from that the SPPs excited by the point source will be reflected when they arrive at the ends of the NW, 
and the reflected SPPs and the directly-excited SPPs will interfere constructively or destructively at the 
position of the point source, resulting in an increase or decrease of the total spontaneous emission rate 
ΓT, and resultantly, a decrease or increase of τ. However, due to the propagation loss of SPPs, when the 
length LNW of the NW exceeds 6μm, the reflected SPPs will be very weak when they propagate to the 
position of the point source, so that the fluctuation of τ caused by the increase of LNW will be less than 
0.035ns, and the value of τ will be close to that for LNW→∞ [shown by the horizontal black dashed line 
in Fig. S10(a)]. 

G. Expected value of the intensity ISPP,p of the SPP excited by a point source with a random 

linear-polarization direction 

In this subsection, we consider the case that the linear-polarization direction of the point source is 
randomly oriented. In this case, the unit vector p along the polarization direction of the point source is 
regarded as a random variable, and consequently, the intensity ISPP,p of SPPs excited by the point source 

D (nm)

(a)

LNW (μm)

(b)

τ
(n

s)

τ
(n

s)



becomes a random variable as well. We will present the calculation formula and results of the expected 
value E(ISPP,p) of ISPP,p. In the coupling system of a point source and a silver NW of infinite length, as 
shown in Fig. S9, p=p(θ,ϕ)=ρsinθ cosϕ+ϕsinθ sinϕ+zcosθ=pρρ+pφϕ+pzz, where θ and ϕ are random 
variables. Assuming that the probabilities of all orientations of p are equal, the joint probability density 
function of θ and ϕ should be 

1
sin ,  for [0, ],  [0,2 ],

( , ) 4
0,  else.

f
θ θ π ϕ π

θ ϕ π
 ∈ ∈= 


              (S15) 

According to the definition of SPP intensity ISPP,p in Section 3.2B of the main text, there is 

2
SPP, 0 exc 0 SPP 0 SPP2

0

1
( ) ( ) | ( ) | ( )

| |
r r E r p p

E
pI η η= Γ = ⋅ ,               (S16) 

where E(r0) is the electric-field vector at the position r0 of the point source excited by the illumination 
field, and E0 is the electric-field vector at the focal point excited by the illumination field in the absence 
of the silver NW. ηSPP is the coupling efficiency of SPP waveguide modes on the silver NW excited by 
the point source, and is defined as ηSPP=ΓSPP/Γτ, where ΓSPP=ΓSPP1+ΓSPP2 [see this before Eq. (2) in the 

main text]. ηSPP=ηSPP(p) depends on p=p(θ,ϕ) and is a random variable as well. Note that the point 
source with a random linear-polarization direction p can excite both of the two degenerate SPP mode 2, 
that is, SPP mode (2, ρ, z) and mode (2, ϕ) [see their definitions before Eq. (2) in the main text]. There 
is ΓSPP2=ΓSPP2,ρ,z+ΓSPP2,ϕ, where ΓSPP2,ρ,z is the coupling rate of SPP mode (2, ρ, z) excited by the ρ- and 
z-components (i.e., pρρ+pzz) of the point source, and ΓSPP2,ϕ is the coupling rate of SPP mode (2, ϕ) 
excited by the ϕ-component (i.e., pφϕ) of the point source. For the calculations of ΓSPP2,ρ,z and ΓSPP2,ϕ, 
one just needs to replace the p in Eq. (3) of the main text by pρρ+pzz and pφϕ, respectively. It should be 

noted that when p is replaced by pρρ+pzz, SPP SPPi i
− +Γ = Γ  no longer holds. 

Using Eq. (S16), the expected value E[ISPP,p(r0)] of ISPP,p(r0) can be calculated as 

2
SPP, 0 0 S

0 0
P

2

P2
0

1
[ ( )] | ( , ) ( , ) ( ,( ) | ( )

| |
)r E r p p

E
pE d fI d

π π
θ ϕ θ ϕ θ θη ϕ ϕ⋅=   .      (S17) 

In addition, for a point source with a random linear-polarization direction, one can define 

SPP, 0 exc 0 SPP( ) ( )r rpI η± ±= Γ ,       (S18) 

as the intensities of the forward (+) and backward (−) SPP waveguide modes propagating along the 

NW excited by the point source, where SPP SPP / τη± ±= Γ Γ  is the coupling efficiency, and 

SPP SPP1 SPP2
± ± ±Γ = Γ + Γ  is the coupling rate of the forward and backward SPP waveguide modes. The 

expected value SPP, 0[ ( )]rpE I ±  of SPP, 0( )rpI ±  can be calculated simply by replacing ηSPP in Eq. (S17) by 

SPPη± . Obviously, there is 

SPP, 0 SPP, 0 SPP, 0( ) ( ) ( )r r rp p pI I I+ −= + , SPP, 0 SPP, 0 SPP, 0[ ( )] [ ( )] [ ( )]r r rp p pE I E I E I+ −= + .      (S19) 

Figure S11(a) shows SPP, 0[ ( )]rpE I +  and SPP, 0[ ( )]rpE I −  plotted as functions of the molecule position 

r0. Here the r0 is on a cylindrical surface with a distance d=20 nm to the surface of the silver NW and 
above the PMMA-1 layer, as shown in Fig. 1(b) of the main text. The cylindrical surface corresponds 
to ρ=R+d, z∈(−400 nm, 400 nm) and ϕ∈(ϕ0, π−ϕ0) with ϕ0=arcsin[(h+d−R)/(R+d)] (R=45 nm, h=60 
nm). The results indicate that, for a molecule with a random linear-polarization direction at any 
position in the excitation region, the expected values of the intensities of the excited forward and 

backward SPPs are equal, that is, SPP, 0[ ( )]rpE I + = SPP, 0[ ( )]rpE I − . Similarly, based on SPP SPPi i
− +Γ = Γ  (i=1, 

2), for molecules with radial, azimuthal and axial polarization directions, the intensities of the excited 
forward and backward SPPs are equal as well, that is, SPP, / / 0 SPP, / / 0( )= ( )r rz zI Iρ φ ρ φ

+ − , where the definition 

of SPP, / / 0( )rzI ρ φ
±  is the same as that in Eq. (S18) with p being replaced by ρ, ϕ or z, respectively. The 

distributions of SPP, 0( )rI ρ
± , SPP, 0( )rzI ±  and SPP, 0( )rI φ

±  are shown in Fig. S11(b)-(d), respectively, which 

are plotted as functions of the molecule position r0. 
Comparing Fig. S11(b) with (a), (c) and (d), it is evident that the intensity of SPPs excited by the 

radially polarized molecules is overall stronger than that by the randomly, axially or azimuthally 
polarized molecules. This further supports the explanation of the experimental results in Section 3.2B 
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