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S1. Preparation of the test sample and the reference sample

A. Preparation of the test sample

The surface of a coverslip is modified for 30s by the plasma cleaning, and then the aqueous solution
of silver nanowires (NWs) is dripped onto the surface of the coverslip. Stand the sample in the air for
3~5min, rinse it with pure water for several times and blow it dry with N, gas. Thus the silver NWs are
adsorbed on the glass substrate. Modify the sample by plasma cleaning again for 10~15s, making the
glass surface and silver NWs negatively charged. Then the aqueous solution of Poly
(diallyldimethylammonium chloride) (PDDA) is dripped onto the sample surface. Stand the sample in
the air for 10min, rinse it with pure water for several times and blow it dry with N, gas. Thus the first
layer of cationic polyelectrolyte (PE) is adsorbed on the surface. Then the aqueous solution of poly
(sodium 4-styrenesulfonate) (PSS) is dripped onto the sample surface. Stand the sample in the air for



10min, rinse it with pure water for several times and dry it with N, gas. Then the first layer of anionic
PE is adsorbed on the surface. Repeat the two steps of adsorption of cationic and anionic PE layers, so
as to complete the adsorption of the multilayer PE with a specific thickness, with the outermost layer
being PDDA. Next, polymethyl methacrylate (PMMA) is spin coated on the surface with a thickness of
h=60nm (as shown in Fig. S3). This layer is called PMMA-1 which covers the whole glass surface and
the bottom part of silver NWs, as shown by the white dashed line in Fig. 1(b) of the main text. The
sample is then put on a hot plate at 160°C for 20min in the air to enhance the adhesion between the
PMMA-1 layer and the coverslip, so as to prevent the PMMA-1 layer from being damaged by the
water solution in the next step. After the sample is naturally cooled to room temperature in the air, the
aqueous solution of fluorescent molecule A647 (1umol/L) is dripped onto the sample surface. Stand the
sample in the air for 5~10min, then rinse it with pure water for several times and blow it dry with N,
gas. In this way, the negatively charged A647 molecules in aqueous solution are only adsorbed onto the
outmost PDDA layer that wraps the silver NW and on the NW’s top part [4=60 nm as sketched in Fig.
1(b)] which is determined by the PMMA-1 layer, and the fluorescent molecules at other positions on
the surface of PMMA-1 layer are washed away. Finally, another layer of PMMA (this layer is called
PMMA-2) with a thickness of about 350nm is spin coated on the surface.

B. Preparation of the reference sample

A PE layer with a thickness of d=19nm is adsorbed on the surface of a clean coverslip. The aqueous
solution of fluorescent molecules A647 (1umol/L) is dripped onto the sample surface. Stand the sample
in the air for 5~10min, rinse it with pure water for several times and blow it dry with N, gas. In this
way, A647 molecules are uniformly adsorbed on the whole sample surface. Finally, a layer of PMMA
with a thickness of about 350nm is spin coated on the surface. The measurements for the reference
sample are carried out with the same oil immersion objective (100x, NA=1.49) as sketched in Fig. 1(a)
of the main text (without the silver NWs).

S2. Additional experimental and theoretical details for the remote radial localization of
molecules
A. Preparation and measurement of the PE layer and PMMA-1 layer
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Fig. S1 Surface topography of the PE layer measured by AFM, with the thickness of PE layer being 11 nm (a), 19
nm (b), 30 nm (c), 41 nm (d), respectively. The upper images show that the surface roughnesses Ra of the PE layer
are about 0.8, 0.8, 1.5, 1.6 nm, respectively. The lower figures show the height distribution along the white dashed

lines in the upper images.

In the experiment, we used two PDDA solutions (called PDDA1 and PDDA?2) and two PSS solutions
(called PSS1 and PSS2). PDDALI is an aqueous solution of PDDA (concentration 1v/v%, i.e., the
volume of PDDA accounts for 1% of the volume of the aqueous solution), and PDDA?2 is a mixed
aqueous solution of PDDA and NaCl (PDDA: 1v/v%, NaCl: 0.25 mol/L). PSS1 is an aqueous solution



of PSS (50v/v%), and PSS2 is a mixed aqueous solution of PSS and NaCl (PSS: 50v/v%, NaCl: 0.25
mol/L). The adsorption procedure for each layer of PE is the same as described in Section S1A. The PE
layer with different thicknesses d were prepared as follows.
d=11 nm: PDDA2—PSS2—PDDA1—PSS1—PDDAI.
d=19 nm: PDDA2—PSS2—PDDA2—PSS2—~PDDA2—PSS2—PDDALI.
d=30 nm: PDDA2—PSS2—PDDA2—PSS2—~PDDA2—PSS2—PDDA2—~PSS2—PDDAI.
d=41 nm: PDDA2—PSS2—PDDA2—PSS2—~PDDA2—PSS2—PDDA2—PSS2—PDDA2
—PSS2—PDDALI.

For these four samples with different values of d, the surface topography of the PE layer adsorbed on
the surface of a glass coverslip was measured by atomic force microscope (AFM), as shown in Fig. S1,
and the thickness of the PE layer was measured by an AFM scratch test, as shown in Fig. S2.
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Fig. S2 Measurement of the thicknesses of the PE layers. The measured thicknesses are d=11 nm (a), 19 nm (b),
30 nm (c) and 41 nm (d). In (a)-(d), the trenches in the AFM images (left column) are scratched by the AFM probe.
The figures in the right column show the height distributions along the white dashed lines in the AFM images. The
height difference between the locations of the two vertical dash-dotted lines determines the value of d.
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Fig. S3 Measurement of the thickness of PMMA-1 layer. The PMMA is spin coated on the surface of a coverslip,
without the PE layer underneath. The trench in the AFM image (left figure) is scratched by the AFM probe. The
right figure shows the height distribution along the white dashed line in the AFM image. The height difference
between the locations of the two vertical dash-dotted lines determines the thickness of PMMA-1, which is about
60nm.
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B. Additional SEM imaging of the silver nanowire without and with the adsorption of PE layer

100nm

Fig. S4 SEM imaging of a bare silver nanowire (on silicon substrate) without the adsorption of PE layer.
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Fig. S5 SEM imaging of a silver nanowire (on silicon substrate) with the adsorption of PE layer (thickness 19 nm)
(a), which is taken from a side view (6,;.,>60°) as illustrated in (b).

C. Definition and calculation of the I'spp, I',,, and I';
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Fig. S6 Schematic diagram of the three emission channels (I'spp, I'ag, 'ioss) Of an emitter (red dot) coupled with a
silver nanowire of infinite length. Channel 1 (red solid and dashed arrows) is the coupling to the bounded and
propagative fundamental SPP modes on the NW, with a coupling rate I'spp. Channel 2 (purple arrows) is the
emission into the homogeneous surrounding medium around the NW, with a far-field emission rate [',q. Channel 3
(yellow wavy line) is the ohmic loss induced by the metal near the point source, with a loss rate I'js.

In the coupling system of an excited fluorescent molecule and an infinite-length silver NW as shown
in Fig. 3(a) of the main text, the molecule is represented by a point source, expressed as an
electric-current density J=d(r-ry)p. The schematic diagram of the emission channels of the point



source is shown in Fig. S6. The physical meanings of the three emission channels have been discussed
in Section 3.2A of the main text. In Fig. S6, the blue rectangle represents a closed surface 4 (2L in
length, near the point source), which contains the point source and part of the silver NW. The emission
of the point source satisfies the energy conservation law of the electromagnetic field,

~ I Re[ELy ()P ] = P, R, XHL,) nda+ [[], S 0B, P S1)

where E.n and Hy, are the electric and magnetic field vectors excited by the point source,
respectively, n is the outward normal unit vector on surface 4, V is the region enclosed by 4, &” is the
imaginary part of the permittivity of the materials in region ¥, w=koc is the angular frequency, and c is
the speed of light in the vacuum. The term on the left side of Eq. (S1) represents the total emission
power (i.e., the total spontaneous emission rate, denoted by I't) of the point source, and the first and
second terms on the right side represent the energy flux out of 4 and the ohmic loss in V, respectively.

The first term on the right side of Eq. (S1) consists of two parts: one part is the emission into the
surrounding homogeneous medium (that is, the far-field emission rate, denoted by I'.,4, shown by the
purple arrows in Fig. S6), and the other part is the coupling to the two bounded and propagative SPP
modes on the silver NW [see Fig. 3(c), (d1)-(d2) in the main text], that is,

1 . . .
@AERe(Etmal XH,, ) nda=T +|exp(lk0ncl:ffL)|2 Lgpp, H exp(zkoncszL)|2 | (S2)

rad

where the factor |exp(ikyni; L) (i=1, 2) originates from the propagation loss experienced by the SPP
mode i that propagates from the position of the point source to surface 4. The definitions and
calculation methods of niff and T'spp; (i=1, 2) are given in Section 3.2B of the main text. From Eq.

(S2), we can obtain the definition of ', as,
1 * . .
L= #AERG(Etutal xH,,, ) nda~|exp(ikyng; L Tgpp, ~|exp(ikongy L) T, (83)

The second term on the right side of Eq. (S1) represents the ohmic loss introduced by the metal
inside the closed surface A, which consists of two parts: one part is the ohmic loss induced by the metal
adjacent to the point source (that is, the loss rate, denoted by I'y,s, shown by the yellow wavy line in
Fig. S6), and the other part is the propagation loss of the two fundamental bounded and propagative
SPP modes that propagate over a distance L, that is,

.[.”‘V%a)g”‘Etotal [*dv =T, +[1~exp(ikyie; LI ITsppy +[1=lexp(ikyng L 1T gpp, (S4)
=T H[Tspp ] exp(ikonifflf)‘zrspm - eXp(ikonerfL)|2 Lopr 1,
with ['spp=I"spp1-+I spp2 [see this before Eq. (2) in the main text]. Ispp is the coupling rate/power of the
two bounded and propagative SPP modes on the cross-section where the point source is located, as
indicated by the red solid and dashed arrows in Fig. S6. From Eq. (S4), we can obtain the definition of
FIOSS as

I ., . .
T = [1f, 5 P~ [Ty —lexplkyl L Ty = explikniy L T (S5)

Equation (S5) shows that I',s, does not contain the propagation loss of SPPs on the NW [that is, the
terms in the square bracket on the right side of Eq. (S5)], which depends on the propagation distance L
and is instead included in ['spp. Substituting Eqgs. (S2) and (S4) into the right side of Eq. (S1), it can be
proved that I'r, T4, ['spp and T satisfy an energy-conservation relation,

gt Usppt o (S6)

rad

The dependence of I'spp on the distance d from the point source to the surface of the NW is shown in
Fig. S7(a), which indicates that I'spp of the radially polarized point source is significantly higher than
that of the axially and azimuthally polarized point sources. Figure S7(b) shows the coupling rates I'spp;
(solid curve) and I'spp, (dashed curve) of SPP modes 1 and 2 ( I'spp=I'spp;+I'sppy) for the radially
polarized point source, which are plotted as functions of d. For the point sources with different
polarization directions, the dependences of I',4 and I'j,is on d are shown in Fig. S7(c)-(d).
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Fig. S7 Coupling rate I'spp of SPP (a), coupling rate I'sppi, of SPP mode 1 and mode 2 for the radially polarized
point source (b), radiative emission rate I'y,q (), and loss rate I'i,ss (d), which are normalized by I'y and plotted as
functions of the distance d from the point source to the surface of the silver NW. In (a), (c) and (d), the red, blue
and green curves correspond to the radially, axially and azimuthally polarized point sources, respectively. The red
solid and dashed curves in (b) correspond to SPP mode 1 and mode 2, respectively. The structural parameters can
be found in Fig. 3 in the main text. The results in (a)-(b) are obtained with the full-wave aperiodic Fourier modal
method (a-FMM),'" and those in (c)-(d) are obtained with the full-wave finite element method (FEM).

D. Measurement of the intrinsic quantum yield 77, of A647 molecules in the reference sample and

derivation of Eq. (1) in the main text for the fluorescence lifetime 7

At room temperature, the intrinsic quantum yield of A647 molecules in water (refractive index
ny=1.33) is 7,=I/(T'y T aw)=33% (provided by Invitrogen, and close to the value in the literature4),
where T', is the total spontaneous emission rate and I', is the intrinsic loss rate of A647 molecules in
water. Similarly, in the reference sample (corresponding to a homogeneous medium with a refractive
index n4=1.5), the intrinsic quantum yield of A647 molecules is expressed as 774=I"¢/(T'¢+T aq), Where I'y
is the total spontaneous emission rate and I'nq is the intrinsic loss rate of A647 molecules in the
reference sample. In the following, we present the measurement of 7.

First, the fluorescence lifetimes of A647 molecules in water and the reference sample were measured
and are denoted by 7, and 7, respectively. As shown in Fig. S8, there is 7,=1/(I'y+I"s,)=1.15 ns and

7=1/(T T p0)=1.75 ns, where T, =, k;n,/(127r) and Ty=n,, k;n,/(127r) . Then there is,

oo —rd T ag /0 & (S7)
Td Iﬂw +FAW nd r ,

where I'y/T'y=n4/ny=1.5/1.33. Using Eq. (S7) and the values of z,, 7, 1, and T'¢/T'y, we obtain 17:=57%.
After obtaining 734, we can give the expression for the fluorescence lifetime 7 of A647 molecules
coupled with the silver NW in the test samples. The total decay rate of an excited molecule can be
expressed as I',=['t +I" a4, where I't is the spontaneous emission rate (see Section 3.2 A in the main text)
and I"aq is the intrinsic loss rate of the molecules in the test samples. Then according to
i_l"d+FAd_(Fd+l"Ad)/Fd_ Un, _ 1
%y FT +rAd (FT +FAd)/]rd FT/Fd +(1/77d _1) ndFT/Fd +(1_77d) '

7 can be expressed as

(S8)

Td
T= .
nI/Ty+0-n,)

(89)
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Fig. S8 Fluorescence decay curves of A647 molecules in water (blue curve) and the reference sample (red curve),
with fluorescence lifetimes 7,=1.15ns and 73=1.75ns, respectively. The black dashed lines are the fitted
single-exponential function Aexp(—#/7), where A is a constant, ¢ is the delay time of the fluorescence emission, and
7is the fluorescence lifetime.

E. Total spontaneous emission rate 'y of a point source with an arbitrary polarization direction

coupled with a silver nanowire

Ag nanowire

Fig. S9 Sketch of the coupling system composed of a fluorescent molecule (shown by the red dot) and a silver NW
of infinite length. The molecule is represented by a point electric-current source with an arbitrary
linear-polarization direction p.

The coupling system composed of a point electric-current source (representing the excited
fluorescent molecule) and an infinite-length silver NW is shown in Fig. S9. In the following, we
consider a point source with an arbitrary linear-polarization direction, which can be expressed as
J=0(r—r()p, where p is a real-valued unit vector along the polarization direction, and ryis the position
of the point source. p can be expressed as p=psin@ cos@ +dsin@ sing +zcos &=p, p+p, P+p.z, with (p, ¢,
z) being the unit vectors along the radial, azimuthal, and axial directions of the NW. The definitions of
6 and @ are illustrated in Fig. S9. The total spontaneous emission rate of the point source is expressed
as

" = —Re[E®(r,) ]2, (S10)
where E® )(ro) is the electric-field vector at position ry excited by the point source J, and the superscript
represents the polarization direction of the point source. In particular, for the radially, azimuthally and
axially polarized point sources (p=p, ¢, z), the excited electric-field vectors are denoted by E(p), E?
and E”, and the total spontaneous emission rates are T'*’ =Re[ EP(r,) 1/2, T =Re[ EX (r,) 112,

and F(T’) =—Re[ E”'(r,) /2, respectively, with the subscripts p, ¢ and z denoting the p-, ¢ and
z-components of the electric field, respectively.
According to the linear-superposition principle of the electromagnetic field, E® can be expressed as

E(P):ppE(P) +p¢ E(¢) +sz(z). (S11)



Substituting Eq. (S11) into Eq. (S10), one can obtain
I == Re(p,E” -p+ pEY -p+ p.E”-p)

1 z z z
= —ERe[pp(ppEL‘” + poES + p.EP) + py(p,EY + pESY + p.EP)+ p.(p,E + pEy” + p.EP)]

z l z z
=p, T + p; T + pITY — 2 Re(p,pES + pyp.EX + pyp,EX + pyp.E® + p.p,ES + p.p,E).

S12
In Eq. (S12), the ro-dependence is omitted in all electric-field terms to simplify the symbols. Equ(atior)l
(S12) gives the relation between the total spontaneous emission rate I"(Tp) of a point source with an
arbitrary linear-polarization direction and those (I'"’,T'¥’,T{"") of point sources polarized along the
directions of three orthogonal basis vectors (p, ¢, z). In the coupling system of a point source and a
silver NW of infinite length, as shown in Fig. S9, there is E =E =EY =E® =E" =E;” =0

(ro-dependence is omitted) from the symmetry of the electromagnetic field. Then, Eq. (S12) reduces to
I = pil® + piTP + piTyY . (S13)

From Eq. (S13), we can obtain

min(I'?, T 7)< TP < max(T', 1, 1), (S14)
where min(I'®, T . T%) and max(I'®, T T”) denote the minimum and maximum values of

(TP, TP, 1), respectively.

F. Impact of the length and dimeter of silver nanowire on the fluorescence lifetime of molecules
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Fig. S10 Dependence of the fluorescence lifetime 7 of A647 molecules on the length Ly (a) and diameter D (b) of
the silver NW based on Eq. (1) in the main text. In (a), D=90nm and the distances from the point source to both
ends of the NW are equal. In (b), the length of the silver NW is infinite. The horizontal black-dashed line in (a)
show the 7 for a silver NW with an infinite length (Lyw—). In (a) and (b), the point source is radially polarized,
with a distance d=25nm to the surface of the NW. The results are obtained with the FEM.

As shown in Fig. S10(a), the fluorescence lifetime 7 [given by Eq. (1) in the main text] of molecules
oscillates quasi-periodically with the increase of length Lyw of the silver NW. This oscillation results
from that the SPPs excited by the point source will be reflected when they arrive at the ends of the NW,
and the reflected SPPs and the directly-excited SPPs will interfere constructively or destructively at the
position of the point source, resulting in an increase or decrease of the total spontaneous emission rate
I't, and resultantly, a decrease or increase of 7. However, due to the propagation loss of SPPs, when the
length Lyw of the NW exceeds 6um, the reflected SPPs will be very weak when they propagate to the
position of the point source, so that the fluctuation of 7 caused by the increase of Lyw will be less than
0.035ns, and the value of 7will be close to that for Lyw—o0 [shown by the horizontal black dashed line
in Fig. S10(a)].

G. Expected value of the intensity Ispp, of the SPP excited by a point source with a random
linear-polarization direction
In this subsection, we consider the case that the linear-polarization direction of the point source is

randomly oriented. In this case, the unit vector p along the polarization direction of the point source is
regarded as a random variable, and consequently, the intensity /spp, of SPPs excited by the point source



becomes a random variable as well. We will present the calculation formula and results of the expected
value E(/spp,,) of Ispp,. In the coupling system of a point source and a silver NW of infinite length, as
shown in Fig. S9, p=p(6,¢)=psinf cos p+¢sin@sin@t+zcos G=p p+pHtp.z, where fand ¢ are random
variables. Assuming that the probabilities of all orientations of p are equal, the joint probability density
function of #and ¢ should be

1
—sind, for 8 [0,7], ¢ [0,27],

f(6,9)=14r (0.7, p<[0.27] (S15)
0, else.

According to the definition of SPP intensity /spp, in Section 3.2B of the main text, there is

B B (). (s16)
|E,|

where E(r) is the electric-field vector at the position r, of the point source excited by the illumination
field, and E, is the electric-field vector at the focal point excited by the illumination field in the absence
of the silver NW. 755pp is the coupling efficiency of SPP waveguide modes on the silver NW excited by
the point source, and is defined as 77spp=I"spp/I" 5, Where T'spp=I"spp;+T'spp [see this before Eq. (2) in the

ISPP, r (rO) = Iﬂexc (rO ) Nspp =

main text]. 7spp=")spp(p) depends on p=p(6,¢) and is a random variable as well. Note that the point
source with a random linear-polarization direction p can excite both of the two degenerate SPP mode 2,
that is, SPP mode (2, p, z) and mode (2, ¢) [see their definitions before Eq. (2) in the main text]. There
is I'sppo=I"spp2, 41 spp2g, Where I'sppy ,-1s the coupling rate of SPP mode (2, p, z) excited by the p- and
z-components (i.e., p,ptp.z) of the point source, and I'spp, 4 is the coupling rate of SPP mode (2, ¢)
excited by the ¢p-component (i.e., psp) of the point source. For the calculations of I'spp,. and I'sppy g,
one just needs to replace the p in Eq. (3) of the main text by p,p+p.z and p 4, respectively. It should be
noted that when p is replaced by p p+p z, g = Tgpp; 1O longer holds.

Using Eq. (S16), the expected value E[/gpp,(1)] of Ispp,(ro) can be calculated as

r 2z 1
Ell g, (,)]= | d6], A9 |E®) PO.OF 1 (PO0)[O9).  (SI17)
0
In addition, for a point source with a random linear-polarization direction, one can define
[éiPP,p(rO) =Ty (ro)nsiPP > (S18)

as the intensities of the forward (+) and backward (—) SPP waveguide modes propagating along the
NW excited by the point source, where 7 =Dy /I, is the coupling efficiency, and

F;,P zlfppl +T§PP2 is the coupling rate of the forward and backward SPP waveguide modes. The
expected value E[/gy, »(rp)] of 1 v, »(ry) can be calculated simply by replacing 7spp in Eq. (S17) by

Tiawp . Obviously, there is
L () = Lo (0) + L5pn (1) - ElLs , (8)]= EL L (6)1+ U, (5)]. (S19)

Figure S11(a) shows E[/gp ,(r,)] and E[lgp ,(r,)] plotted as functions of the molecule position

ro. Here the ry is on a cylindrical surface with a distance d=20 nm to the surface of the silver NW and
above the PMMA-1 layer, as shown in Fig. 1(b) of the main text. The cylindrical surface corresponds
to p=R+d, z€(-400 nm, 400 nm) and ¢€E€(dy, 7¢o) With go=arcsin[(h+d—R)/(R+d)] (R=45 nm, h=60
nm). The results indicate that, for a molecule with a random linear-polarization direction at any
position in the excitation region, the expected values of the intensities of the excited forward and
backward SPPs are equal, that is, E[Igp ,(r))]=E[lgy,(r,)]. Similarly, based on Iy =Ty (=1,
2), for molecules with radial, azimuthal and axial polarization directions, the intensities of the excited
forward and backward SPPs are equal as well, that is, Zgpp - (Yy)=Lspp »/4/-(Xy) , Where the definition

of I;PPM,,Z (r,) is the same as that in Eq. (S18) with p being replaced by p, ¢ or z, respectively. The
distributions of Zgp,(K,), I5p-(r,) and Igy,(r,) are shown in Fig. S11(b)-(d), respectively, which

are plotted as functions of the molecule position ry.

Comparing Fig. S11(b) with (a), (c) and (d), it is evident that the intensity of SPPs excited by the
radially polarized molecules is overall stronger than that by the randomly, axially or azimuthally
polarized molecules. This further supports the explanation of the experimental results in Section 3.2B



of the main text: the SPPs whose scattered far field is collected from the remote ends of the silver NW
are dominantly excited by the radially polarized molecules.
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Fig. S11 Intensities of forward (+) and backward (—) SPPs excited by the molecules with a random (al)-(a2),
radial (b), axial (¢) or azimuthal (d) polarization, which are plotted as functions of the molecule position r, on a
cylindrical surface with a distance d=20nm to the surface of the silver NW (radius R=45nm) and above the
PMMA-1 layer [see Fig. 1(b) in the main text]. The cylindrical surface corresponds to p=R+d=65nm, z€(—400nm,
400nm) and ¢ € (o, 7m¢o) (po=arcsin[(h+d—R)/(R+d)], h=60nm). The molecules are excited by a tightly-focused
(NA=1.49) circularly-polarized uniform plane wave with the focal point located at (p, ¢, z)=(45nm, 90°, 0). The
results are obtained with the FEM.

S3. Additional experimental and theoretical details for the remote axial localization of
molecules

A. Derivation of Eq. (5) in the main text for the remote axial localization of a point emitter

coupled with the silver nanowire

As shown in Fig. S12, the detection efficiencies of SPP mode i (izl 2) scattered at the left and right
ends of the silver NW are defined as «; =T

: eotee / T7 and & =T7 o /T, respectively, where T
and T} are the energy fluxes of SPP mode i excited by the point source when they arrive at the left
and T}

fields of SPP mode i collected by the objective lens from the left and right ends of the NW, respectively.
It is assumed that the morphologies of the left and right ends of the NW are the same, i.e.,

and right ends of the NW, respectively. I';

i,collect

are the energy fluxes of the scattered

i,collect

K, =K =K. On the cross-section (plane z=z, in Fig. S12) where SPPs begin to propagate, the initial
energy fluxes Iy and T, of left-going and right-going SPP mode i are abbreviated as Iy, and
T, , respectively. It is assumed that T'gpp, =Iipp [see the explanation after Eq. (5) in the main text],

which then gives Ty =T, =T'gpp/2 with Tgpp; = Dpp; + gppy - According to the propagation law of SPP
modes, there are
Ty =Ty exp[-2k, L Im(ng )], TV =T, exp[~2k,L" Im(nyr)] (5202)

T =Ty exp[-2k,L Im(n3)],  T3=T% expl-2k,L" Im(ny )], (S20b)



where L™=zy—z and L"=z"—z, denote the axial distances from the point source to the left and right ends
of the NW, Im(n.;) (=1, 2) is the imaginary part of the complex effective index of SPP mode i, and

ke=27 /A is the wavenumber in the vacuum. The ratio of the energy fluxes of the SPPs’ scattered fields
collected from the left and right ends of the NW is

+ +
F:ollect — 1“l,collect + FZ,collect _ FT’(] +F; Kz
T, T e +T I x+ThK

collect 1,collect

- (S21)
2, collect

+

where T} . =Tk (i=1, 2) is used. For deriving Eq. (S21), it is assumed that the multiple

reflection of SPPs at the two ends of the silver NW can be neglected, which holds for NWs that are
long enough (for example, the NWs longer than 10 um tested in the experiment, see Fig. S14).
Substituting Eq. (20) into Eq. (21), we can obtain
Tttt _ (Tsppr / 2) exp[—2k, L' Im(ry5 )1k, + (Tpry / 2) exp[—2k,L" Im(ny )15,
Cooeer (Tsppy / 2) exp[—2k, L Im(niff )i+ (Dgpps / 2) exp[—2k, L Im(nfﬂ)]l(" 2
_ oy +u,
B oyu,+1

(S22)

where a=x/K5, ¥=Tspp//Tsppy» U;=€xp[—2Im( nlyy Yeo(z™+2 —2z,)], uy=exp[-2Im( 1z Yeo(z 4z =22,)],

and us=exp[—2Im( niff - ”esz Yeo(zp—2)]-
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Fig. S12 Schematic diagram of the remote axial localization of an emitter coupled with the silver nanowire. The
axial coordinate of the point source (represented by the red dot) is zo, and the axial coordinates of the left and right
ends of the silver NW are z~ and z*, respectively. The initial energy fluxes of the backward and forward SPP mode i

(i=1, 2) excited by the point source are I, and T, respectively. The energy fluxes of the backward and

forward SPP mode i are I'; and '] when they arrive at the left and right ends of the N'W, respectively. The
energy fluxes of the SPPs’ scattered fields collected from the left and right ends of the NW by the objective lens
are T =T coneet T coteer AN Togeer =T cotieer + o coeer » T€SPeCtively, where T e and T e (=1, 2)

denote the energy fluxes of the scattered fields of SPP mode i collected from the left and right ends of the NW,
respectively.

B. Values of the & and length of silver nanowires for the remote axial localization of molecules

For the ten silver NWs tested in Fig. 4(c) of the main text, the values of «rin Eq. (5) obtained by a
numerical fitting of the experimental data are shown in Fig. S13. The average value of the obtained
o for the ten silver NWs is 12.4.

The central positions of the fluorescence spots at the two ends of the NW and the central position of
the fluorescence spot in the excitation region are determined by a Gaussian fitting. The former are
treated as the positions z~ and z" of the two ends of the NW, which then determine the length of the NW
to be Lyw=z —z , as shown in Fig. S14. The objective function of the Gaussian fitting is expressed as

: (xm_xo)z_(yn_yo)z 2
i S o) =t expi- e O e (523)

x il

where 7,,,1s the intensity distribution imaged by the EMCCD, which is the gray value of the mth-row



and nth-column pixel with a coordinate (x,,, y,), and o, 0,, Xg, V, are the variables to be fitted, where
(%0, ¥,) 1s the fitted central position of the fluorescence spot.
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Fig. S13 For the ten silver NWs tested in Fig. 4(c) of the main text, the values of « obtained by numerical fitting
(see Section 4 in the main text for the fitting method).
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Fig. S14 Lengths Ly of the ten silver NWs tested in Fig. 4(c) of the main text, which are obtained by a Gaussian
fitting of the fluorescence spots at the two ends of the NW. The number on the horizontal axis represents the
different NWs, and the different data points (represented by “+”) for the same NW correspond to different
fluorescence excitation positions.

References

1 J. P. Hugonin and P. Lalanne, J. Opt. Soc. Am. A, 2005, 22, 1844-1849.

2 The calculation is performed with an in-house software: H. Liu, DIFF CODE for Modeling Light
Diffraction in Nanostructures, Nankai University, 2010.

3 T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev and H. Giessen, Opt. Express, 2009, 17,
8051-8061.

4 D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F.
Garcia-Parajo and J. Wenger, Nat. Nanotechnol., 2013, 8, 512-516.



