Supporting Information

2 Efficient blue CsPb(Br-Cl)₃ nanoparticles enabled by strontium

3 halides and amine halides synergetic optimization

- 4 Runda Guo^a, Weizhuo Zhang^{a, b}, Xin Li^a, Linyuan Lian^b, Hongting Chen^a, Chencheng
- 5 Peng^a, Liang Sun^a, ShiyuanLiu^c, Jianbing Zhang^{b*} and Lei Wang^{a*}
- 6 ^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and
- 7 Technology, Wuhan 430074, China
- 8 ^b School of Optical and Electronic Information, Huazhong University of Science and Technology,
- 9 Wuhan 430074, China
- 10 ^c State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University
- 11 of Science and Technology, Wuhan 430074, China

12 Corresponding Author

- 13 *E-mail: jbzhang@mail.hust.edu.cn; wanglei@mail.hust.edu.cn
- 14

1

16 **Table S1.** The PLQY of CsPb(Br-Cl)₃ perovskite NPs with different ratios of NH_4^+/Cs^+ 17 (*R*).

Samples	PLQY
<i>R=0</i>	5%
<i>R=10%</i>	12%
<i>R=20%</i>	13%
<i>R=40%</i>	12%

19 Table S2. ICP-OES analysis of strontium-based NPs.

Samples	Sr ²⁺ /Pb ²⁺
Sr-0.1	0.6%
Sr-0.3	1.54%
Sr-0.5	3.6%

20

22 Figure S1. Time-resolved PL spectra for CsPb(Br-Cl)₃ perovskite NPs with different

- 23 ratios of $NH_4^+/Cs^+(R)$.
- 24

26 Figure S2. Tauc plot of Sr-j samples.

29 Figure S3. Absolute PLQYs of Sr-j based on Sr(Ac)₂.

- 32 Figure S4. HRTEM images of Sr-j (0, 0.1, 0.3, 0.5).

Figure S5. Quantitative XPS results of Sr-j, for (a) X to Pb ratio (b) Br to Cl ratio (c)
N to Pb ratio (d) O to Pb ratio.

39 Figure S6. Fourier transform infrared spectroscopy (FTIR) spectra of Sr-j.

42 Figure S7. Time-resolved PL spectra of Sr-j.

44 Table S3. Summary of the time-resolved PL decay fitting parameters of Sr-j.

Samples	PLQY (%)	A ₁	$\tau_1(ns)$	A ₂	$\tau_2(ns)$	$\tau_{avg}(ns)$
Sr-0	13%	0.9936	1.328	0.0064	10.382	1.764
Sr-0.1	29%	0.8469	3.323	0.1531	11.981	6.739
Sr-0.3	48%	0.7216	4.043	0.2784	11.164	7.716
Sr-0.5	60%	0.7597	4.018	0.2403	14.809	9.827

 P_2 P_3 ${\bf P}_1$ $\tau_1(ps)$ $\tau_2(ps)$ $\tau_3(ns)$ Samples Sr-0 0.828 1.393 0.060 48.297 0.112 3098.029 0.532 0.194 0.274 Sr-0.5 22.227 240.236 3580.387

46 Table S4. Summary of the corresponding fs-TA time constants of Sr-0 and Sr-0.5.

49 Figure S8. PLQY record for Sr-j samples (a) varied with days under atmosphere
50 condition, (b) remained after continuous UV-irradiation and (c) remained after heated.
51 (d, e) Images of Sr-j before, after UV irradiation. (f, g) Images of Sr-j before, after
52 thermally treated on the hot plate.

55 Figure S9. (a) Normalized PL and optical absorption spectra of each NH₄X-m NPs
56 sample. (b) Absolute PLQYs of NH₄X-m.

59 Figure S10. XPS spectra of NH_4X -0 and NH_4X -2 samples.

62 Figure S11. Quantitative XPS results of NH₄X-m, for (a) X to Pb ratio (b) Br to Cl

63 ratio (c) N to Pb ratio (d) O to Pb ratio.

Samples	PLQY (%)	A ₁	$\tau_1(ns)$	A_2	$\tau_2(ns)$	$\tau_{avg}(ns)$
NH ₄ X-0	60%	0.7906	4.261	0.2094	14.172	8.902
NH ₄ X-1	78%	0.7605	6.119	0.2395	19.759	12.997
NH ₄ X-2	96%	0.7762	14.883	0.2238	32.202	21.537
NH ₄ X-3	95%	0.6510	12.409	0.3490	29.743	22.157

Table S5. Summary of the time-resolved PL decay fitting parameters of NH_4X -m.

Table S6. List of some reported blue perovskite NPs performance.

Samples	Peak (nm)	PLQY (%)
MAPbCl _{0.5} Br _{2.5}	458	38.4%
CsPbCl _{1.5} Br _{1.5}	455	37%
CsPbBr ₃ : Al ³⁺	456	42%
CsPbBr ₃ : Cd ²⁺	452	60%
CsPb _{0.93} Cu _{0.07} (Br/Cl) ₃	455	80%
CsPbBr ₃ : xNd ³⁺	459	90%
This work	455	96%

78 Figure S13. (a) PL spectra of blue device based on NH_4X -m. (b) Images for blue

79 emitting. (c) Power efficiency vs current curves. (d) Luminescence vs current curves.

Figure S14. (a) PL spectra of photoluminescent WLED based on NH₄X-m mixed with
commercial phosphors (Ca,Sr)AlSiN₃:Eu and (Sr,Ba)₂SiO₄:Eu. (b) Images for white
emitting. (c) Power efficiency vs current curves. (d) Luminescence vs current curves.