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S1. Synthesis General

The 1H NMR spectra was recorded on a Bruker AVANCE 500 spectrometer at 

500 MHz, using tetramethylsilane (TMS) as the internal standard and CDCl3 as the 

solvent. The matrix- assisted laser desorption ionization time-of-flight (MALDI-TOF) 

mass spectrum was measured using an AXIMA-CFRTM plus instrument. 
1H NMR (500 MHz, Chloroform-d) δ 8.04 (t, J = 1.7 Hz, 1H), 7.93 (d, J = 6.5 Hz, 2H), 

7.91 - 7.86 (m, 2H), 7.78 - 7.70 (m, 6H), 7.66 - 7.61 (m, 2H), 7.59 - 7.53 (m, 2H), 7.47 

(t, J = 7.6 Hz, 4H), 7.42 - 7.35 (m, 6H).13C NMR (101 MHz, CDCl3) δ 143.48, 140.89, 

139.67, 138.65, 136.93, 133.66, 131.30, 131.26, 128.81, 128.40, 127.88, 126.65, 

126.28, 125.03, 124.77, 124.39, 124.22, 117.89, 110.62.

MALDI-TOF-MS (m/z): calcd for C39H25N, 507.20; found, 507.28 [M+].
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Figure S1. 1H-NMR Spectrum of MACN in CDCl3.



Figure S2. Mass Spectrum (M+H+) of MACN.

S2. Supplementary Thermal and Electrochemical Properties

(a) (b)

Figure S3. (a) TGA and DSC curves (inset) of MACN. (b) Electrochemical CV curves of MACN.

S3. Supplementary Theoretical Calculations
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Figure S4. The NTO transition character of the first five singlet and triplet states.

S4. Supplementary Photophysical Properties

(a) (b)

Figure S5. (a) PL spectra in different solvents; (b) Lippert–Mataga plots of the fluorescence maxima 

of MACN against the solvent polarity parameters

Table S1. Photophysical parameters of MACN
MACN PLQY (%) τ(ns) Kr/108(S-1) Knr/108(S-1)

THF 74.3 4.26 1.74 0.61
Neat film 38.2 1.04 3.67 5.95

S5. Supplementary Electroluminescence Performances

To evaluate the transporting properties of this material, single-carrier devices were 

fabricated with structure of ITO/NPB (10 nm)/MACN (80nm)/NPB (10 nm)/Al for 

hole-only device and ITO/TPBi (10 nm)/MACN (80 nm)/TPBi (10 nm)/LiF /Al for 

electron-only device. NPB and TPBi are used to prevent electron and hole injection 

from the cathode and anode, respectively. As the voltage increased, the current becomes 

space-charge limited with a nearly quadratic dependence on voltage. The hole and 

electron mobilities were calculated from the slope of the J1/2-V curves to be 1.47×10-12 

cm2 V-1s-1 and 6.13×10-7 cm2 V-1 s-1, respectively, indicating that imbalance of carrier 

recombination may be the reason for limiting the EQE of devices based on MACN.
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Figure S6. Current density versus voltage characteristics of the hole-only and electron-only devices.
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Figure S7. (a) J-V-L curves of the devices. (b) CE-L-PE characteristics. (c) L-EQE curves. (d) The 

EL spectra.

Table S2. Device performances of MACN OLEDs with different structures

Von Lmax CEmax EQEmax PEmax EL peak CIE
Device

(V) (cd m-2) (cd A-1) (%) (lm W-1) (nm) (x,y)
A 3.8 3942 4.99 7.51 3.14 436 (0.154,0.075)
B 4 2682 3.56 5.31 2.94 436 (0.155,0.075)
C 3 3236 3.21 4.71 1.99 438 (0.153,0.75)

Device A: ITO/ PEDOT: PSS (40 nm)/TCTA (40 nm)/MACN (20 nm)/ TPBi (30 nm)/LiF/Al

Device B: ITO/P PEDOT: PSS (40 nm)/TCTA (40 nm)/MACN (20 nm)/TmPyPb (30 nm)/LiF/Al



Device C: ITO/ PEDOT: PSS (40 nm) /TAPC (20 nm) /TCTA (30 nm)/MACN (20 nm)/TPBi (30 

nm)/LiF/Al

Figure S8. Variable-angle PL measurements of MACN film. Θ, orientation factors. For fully 

horizontal dipoles, Θ equals 100% and isotropic dipole orientation, Θ equals 67%.

S6. Supplementary Mechanism Study

(a) (b)

Figure S9. (a) Transient absorption spectra of the pristine PtOEP solution. (b) Transient absorption 

spectra of the MACN & PtOEP solution.

(b)

Figure S10. (a) Top: the delayed emission spectrum of the MACN & BP solution; middle: the 

phosphorescence spectrum of BP. The fluorescence spectrum of MACN at 77 K appears at the 



bottom. In the mixed solution, the concentration of the ketones was 10-5 M, and the concentration 

of MACN was 10-4 M. The excitation wavelength was 280 nm. (b) The PL decay spectra of the 

MACN and MACN& IDO solutions at room temperature.


