L

# Direct Ink Writing of Graphene/CNT/Silicone Composite Strain

## Sensor with Near-Zero Temperature Coefficient of Resistance

Wei-Bin Zhu,<sup>a</sup> Shan-Shan Xue,<sup>a</sup> Hao Zhang,<sup>a</sup> You-Yong Wang,<sup>a</sup> Pei Huang,<sup>a,b</sup> Zhen-Hua Tang,<sup>a,\*</sup> Yuan-Qing Li,<sup>a,b,\*</sup> Shao-Yun Fu<sup>a,b,\*</sup>

a. College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China.

1

- b. State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
- \* Corresponding author. Email: <u>zhtang@cqu.edu.cn</u>, <u>yqli@cqu.edu.cn</u>, <u>syfu@cqu.edu.cn</u>

## **1** Supporting Figures

I



Figure S1. The typical stress-strain curves of the neat silicone fiber and GCE fibers.



Figure S2. Current-voltage (I-V) curves of the GCE-20 fiber strain sensor at different strains with the voltage ranging from -3 to 3 V.



Figure S3. Long-term cyclic stability testing of the GCE fiber strain sensor under stretching-releasing cycles (10000 cycles) with a loading strain of 20%.

#### **2** Supporting Tables

T

|         | I                | 1 1                                                                                                                                                                                                         |  |  |
|---------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | GNPs content in  |                                                                                                                                                                                                             |  |  |
| Sample  | GNPs/CNTs hybrid | Filler contents                                                                                                                                                                                             |  |  |
|         | fillers          |                                                                                                                                                                                                             |  |  |
| CCE 0   | 0 wt%            | 0 wt% GNP, 2.5 wt%                                                                                                                                                                                          |  |  |
| GCE-0   |                  | CNT                                                                                                                                                                                                         |  |  |
| OCE 10  | 10 wt%           | Filler contents<br>0 wt% GNP, 2.5 wt%<br>CNT<br>0.25 wt% GNP, 2.25<br>wt% CNT<br>0.5 wt% GNP, 2 wt%<br>CNT<br>0.625 wt% GNP, 1.875<br>wt% CNT<br>0.75 wt% GNP, 1.75<br>wt% CNT<br>2.5 wt% GNP, 0 wt%<br>CNT |  |  |
| GCE-10  |                  | wt% CNT                                                                                                                                                                                                     |  |  |
|         | 20 wt%           | wt% CNT<br>0.5 wt% GNP, 2 wt%<br>CNT                                                                                                                                                                        |  |  |
| GCE-20  |                  | CNT                                                                                                                                                                                                         |  |  |
|         | 25 wt%           | 0.625 wt% GNP, 1.875                                                                                                                                                                                        |  |  |
| GCE-25  |                  | wt% CNT                                                                                                                                                                                                     |  |  |
|         | 30 wt%           | 0.75 wt% GNP, 1.75                                                                                                                                                                                          |  |  |
| GCE-30  |                  | wt% CNT                                                                                                                                                                                                     |  |  |
|         | 100 wt%          | 2.5 wt% GNP, 0 wt%                                                                                                                                                                                          |  |  |
| GCE-100 |                  | CNT                                                                                                                                                                                                         |  |  |

Table S1. Contents of components of the prepared inks.\*

\* Note: the total mass loading of 2.5 wt% is optimized by the experiment with good electrical conductivity for the further application as characteristic content. Specially, the electrical conductivities of 0.5 wt%, 1 wt%, 2 wt%, 2.5 wt%, 3 wt% and 4 wt% GNPs/elastomer composites are about 8.58\*10<sup>-8</sup> S/m ,1.35\*10<sup>-4</sup> S/m, 0.03 S/m, 2.38 S/m, 2.87 S/m and 3.75 S/m, respectively. And the composites with 2.5 wt% filler content have well-balanced performances between sensitivity and work stability.

| Table 52. Parameters obtained by fitting KCK curves. |        |                |                |             |            |                         |  |
|------------------------------------------------------|--------|----------------|----------------|-------------|------------|-------------------------|--|
| Parameters                                           | $C_1$  | C <sub>2</sub> | C <sub>3</sub> | $C_4$       | $C_5$      | C <sub>6</sub>          |  |
| GCE                                                  | 0.5135 | -0.2406        | 0.7243         | -2.384*10-3 | 2.878*10-5 | -9.623*10 <sup>-8</sup> |  |

Table S2. Parameters obtained by fitting RCR curves.

| Strain sensors                        | Tensile strain (%) | GF      | Refs.     |
|---------------------------------------|--------------------|---------|-----------|
| Graphene films                        | 187                | 1500    | 1         |
|                                       | 300                | 1378    | 2         |
| CN I/silicone libers                  | 600                | 153     |           |
| PANI-based polymer                    | 450                | 4.7     | 3         |
| Carbonized Silk Fabric                | 500                | 37.5    | 4         |
| CNT/PVA hydrogel                      | 1000               | 1.5     | 5         |
| Polyaniline-based hydrogel            | 100                | 2.4     | 6         |
| PPy@TPU pruney fiber                  | 150                | 3       | 7         |
| PVA/graphene/PDMS yarn                | 150                | 1.8     | 8         |
| MXene/CNT                             | 130                | 772     | 9         |
| Gold/PDMS fiber                       | 120                | 33      | 10        |
| Silver nanowire textile               | 100                | 6.3     | 11        |
| Carbonized silk georgette             | 100                | 173     | 12        |
| Graphene/cellulose paper              | 100                | 7       | 13        |
| Graphene-based fiber                  | 100                | 2.5     | 14        |
| Graphene/CNT/PDMS                     | 85                 | 35      | 15        |
| RGO/elastic tape                      | 82                 | 150     | 16        |
| Silver nanowire/PDMS                  | 70                 | 14      | 17        |
| Graphite/printing papers              | 60                 | 536.6   | 18        |
| AgNPs/graphene-microsheets/PU         | 50                 | 500     | 19        |
| CNT/thermal plastic elastomer         | 34.2               | 1135    | 20        |
| Au nanopopcorn/MoS <sub>2</sub> fiber | 30                 | 0.7     | 21        |
| Carbonized cotton thread              | 10                 | 18.5    | 22        |
| silver nanowire/PDMS                  | 9.6                | 926     | 23        |
| Graphene woven fabric/PDMS            | 3                  | 230     | 24        |
| GCE-20 fiber                          | 100                | 14550.2 | This work |

Table S3. Comparison of various stretchable strain sensors.\*

\* Note: CNT represents carbon nanotube; AgNPs is silver nanoparticle; PDMS denotes

I

polydimethylsiloxane; PANI is polyaniline; PVA is polyvinyl alcohol; PPy is polypyrrole;

TPU represents thermoplastic polyurethane; RGO is reduced graphene oxide. MoS<sub>2</sub> is

Molybdenum sulfide; PU denotes polyurethane.

### Reference

- F. Pan, S.-M. Chen, Y. Li, Z. Tao, J. Ye, K. Ni, H. Yu, B. Xiang, Y. Ren, F. Qin, S.-H. Yu and Y. Zhu, *Advanced Functional Materials*, 2018, 28.
- Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang and B. Li, ACS Appl Mater Interfaces, 2018, 10, 6624-6635.
- T. Wang, Y. Zhang, Q. Liu, W. Cheng, X. Wang, L. Pan, B. Xu and H. Xu, Advanced Functional Materials, 2018, 28.
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren and Y. Zhang, *Adv Mater*, 2016, DOI: 10.1002/adma.201601572.
- 5. G. Cai, J. Wang, K. Qian, J. Chen, S. Li and P. S. Lee, Adv Sci (Weinh), 2017, 4, 1600190.
- Q. Feng, K. Wan, C. Zhang and T. Liu, Journal of Polymer Science, 2021, DOI: 10.1002/pol.20210766.
- 7. S. Chen, J. Li, H. Liu, W. Shi, Z. Peng and L. Liu, *Chemical Engineering Journal*, 2022, 430.
- J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park and O. O. Park, *ACS Appl Mater Interfaces*, 2015, 7, 6317-6324.
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin, W. Huang, J. Shao, J. Yang and X. Dong, ACS Nano, 2018, 12, 56-62.
- Z. Liu, D. Qi, G. Hu, H. Wang, Y. Jiang, G. Chen, Y. Luo, X. J. Loh, B. Liedberg and X. Chen, Adv Mater, 2018, 30.
- 11. S. Chen, S. Liu, P. Wang, H. Liu and L. Liu, Journal of Materials Science, 2017, 53, 2995-3005.
- 12. C. Wang, K. Xia, M. Jian, H. Wang, M. Zhang and Y. Zhang, *Journal of Materials Chemistry C*, 2017, **5**, 7604-7611.
- 13. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee and P. S. Lee, *Adv Mater*, 2014, **26**, 2022-2027.
- 14. Y. Cheng, R. Wang, J. Sun and L. Gao, Adv Mater, 2015, 27, 7365-7371.
- Y. Cai, J. Shen, Z. Dai, X. Zang, Q. Dong, G. Guan, L. J. Li, W. Huang and X. Dong, *Adv Mater*, 2017, 29.
- 16. Q. Liu, J. Chen, Y. Li and G. Shi, ACS Nano, 2016, 10, 7901-7906.
- 17. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, ACS Nano, 2014, 8, 5154–5163.
- 18. X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao and Y. Zhang, Advanced Functional Materials, 2015, 25, 2395-2401.
- 19. X. Li, H. Hu, T. Hua, B. Xu and S. Jiang, Nano Research, 2018, 11, 5799-5811.
- L. Li, H. Xiang, Y. Xiong, H. Zhao, Y. Bai, S. Wang, F. Sun, M. Hao, L. Liu, T. Li, Z. Peng, J. Xu and T. Zhang, *Adv Sci (Weinh)*, 2018, 5, 1800558.
- L. Lan, F. Zhao, Y. Yao, J. Ping and Y. Ying, ACS Appl Mater Interfaces, 2020, 12, 10689-10696.
- 22. Y. Q. Li, P. Huang, W. B. Zhu, S. Y. Fu, N. Hu and K. Liao, Sci Rep, 2017, 7, 45013.

- 23. Y. Heo, Y. Hwang, H. S. Jung, S. H. Choa and H. C. Ko, *Small*, 2017, 13.
- 24. X. Liu, C. Tang, X. Du, S. Xiong, S. Xi, Y. Liu, X. Shen, Q. Zheng, Z. Wang, Y. Wu, A. Horner and J.-K. Kim, *Materials Horizons*, 2017, **4**, 477-486.