Electronic Supporting Information

Uniaxial-oriented $FA_xMA_{1-x}PbI_3$ films with low intragrain and structural defects for self-powered photodetectors

Li Zhang,^a Teng Zhang,^a Yaping Gao,^a Deliang Cui,^a Qilong Wang,^b Gang Lian,^{*a} Haohai Yu,^{*a} huaijin

Zhang^a, and Ching-Ping Wong^c

^a State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P.R. China

^b Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry

& Chemical Engineering, Shandong University, Jinan 250100, P.R. China

^c School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,

United States

* Corresponding Authors:

E-mail: liangang@sdu.edu.cn, haohaiyu@sdu.edu.cn

Fig. S1 XRD patterns from 13° to 15° of control and TP films.

Fig. S2 (a) Schematic of device structure and (b) Mask pattern.

Fig. S3 High-magnification top-view SEM image of SnO₂-control film.

Fig. S4 Top-view SEM images and particle size distribution of (a) SnO₂-TP75 and (b) SnO₂-TP100 films.

Fig. S5 AFM topographic images of (a) Si substrate and (b) SnO₂/ITO substrate; (c) surface roughness of Si and

SnO₂/ITO substrates.

Fig. S6 Cross-section SEM images of SnO_2 -control films with different thickness.

Fig. S7 XRD pattern of SnO₂-TP75 film.

Fig. S8 Rocking curves of SnO_2 -control and SnO_2 -TP75 films.

Fig. S9 Dark I–V curve of electron-only photodetector based of SnO₂-control and SnO₂-TP75 films.

Fig. S10 (a) Ultraviolet photoelectron spectra of SnO_2 -TP75 film, (b) diagram of the energy levels of the SPPDs based on SnO_2 -TP75 film.

To obtain the diagram of the energy levels of SPPDs, we carried out UPS measurements to profile the CBM and VBM of the SnO₂-TP75 film. Equations (1) and (2) were used for the calculation of Fermi energy (E_f) and E_{VBM} , respectively:

$$E_f = -(h\nu - E_{cut - off}) \tag{1}$$

$$E_{VBM} = -\left[hv - \left(E_{cut - off} - E_{oneset}\right)\right] = -IE$$
⁽²⁾

wherein, $E_{cut-off}$ and E_{onset} are the cut-off and onset energy of the photo-electron signals, respectively, hv (21.2 eV) is the photon energy of the He I α source; *IE* is ionization energy [*Advanced Energy Materials, 2021, 11(28): 2101080*]. According to the above equations, the VBM of SnO₂-TP75 film locates at -5.46 eV. The optical bandgap ($E_{g,opt}$) of SnO₂-TP75 film is extracted from the corresponding absorption spectrum (*Fig. S11*). The $E_{g,opts}$ of SnO₂-TP75 film is 1.54 eV. Thus, the CBM of the SnO₂-TP75 film locates at -3.92 eV. The corresponding diagram of the energy levels associated with the device was shown in *Fig. S10b*.

Fig. S11 UV-vis absorptions of SnO_2 -control and SnO_2 -TP75 film.

Fig. S12 I-T curves of SPPD based on SnO₂-control and SnO₂-TP75 films under different power intensities of 671

nm laser illumination at a bias of 0 V.

Fig. S13 I_{light}/I_{dark} ratio of SPPD based on SnO₂-control and SnO₂-TP75 films under difffferent power intensities of

671 nm laser illumination at a bias of 0 V.

Fig. S14 Linear dynamic range of SPPD based on SnO₂-TP75 film under 671 nm laser illumination at a bias of 0 V.

Fig. S15 Frequency-dependent noise current of SPPD based on perovskite films at a bias of 0 V (a) SnO₂-control film and (b) SnO₂-TP75 film.

Detectivity (D*) is used to evaluate the performance of photodetector. It can be calculated via

the equation $D^* = \frac{R\sqrt{AB}}{i_n}$, where A is the active area of the device, B is the detection bandwidth and i_n is the noise current. In this work, i_n is generally dominated by 1/f noise in the low-frequency region. As shown in *Fig. S15*, when the frequency is 50 Hz, the detected 1/f noise currents of the two devices are 0.22 pA Hz^{-1/2} and 0.21 pA Hz^{-1/2}. On increasing the frequency over 50 Hz, the noise of devices gradually approach the shot noise limit $\binom{i}{shot} = (2eI_dB)^{1/2}$ of 0.18 pA Hz^{-1/2} and 0.2 pA Hz^{-1/2}. With continuously increasing the frequency, D^* can be calculated from the shot noise.

$$D^* = \frac{R\sqrt{AB}}{i}$$

However, according to i_n , the lower i_n , the larger D^{*} value. Therefore, the modulation frequency was set to 50 Hz.

Fig. S16 (a) Responsivity and (b) detectivity of photodetectors based on SnO₂-control and SnO₂-TP75 films under

671 nm laser illumination at a bias of 1 V.

Fig. S17 Response-recovery time curve of SPPD based on SnO2-control film under 671 nm laser illumination at a

bias of 0 V.

Fig. S18 Nyquist plots of photodetector based on SnO₂-control and SnO₂-TP75 films.

Sample	τ ₁	A ₁	τ ₂	A ₂	τ_{ave}
Control film	19.3 ns	72.3%	239.6 ns	27.7%	201.4 ns
TP film	120.2 ns	37.9%	985.8 ns	62.1%	925.8 ns

 Table S1. The bi-exponential equation parameters for fitting the TRPL curves of control and TP films.

Sample	τ ₁	A ₁	τ ₂	A ₂	τ_{ave}
SnO ₂ -Control film	21.0 ns	85.7%	265.7 ns	14.3%	187.0 ns
SnO ₂ -TP75 film	66.2 ns	45.5%	630.9 ns	54.5%	585.4 ns

Table S2. The bi-exponential equation parameters for fitting the TRPL curves of SnO₂-control and SnO₂-TP75 films.

Table S3. Key figure-of-merit values for SPPD fabricated in the present study compared with those of devices

 reported in the literature.

Structure	Responsivity	Detectivity	Wavelength	Ref.
	(mA W ⁻¹)	(Jones)	(nm)	
Si/SnO ₂ /MAPbl ₃ /MoO ₃	50.9	2.23×10 ¹²	300-1150	1
ITO/PEDOT:PSS/MAPbI ₃ /PCBM/Ag	436	3.125×10 ¹⁰	300-800	2
ITO/Triazine-Th-OMeTAD/MAPbl ₃ /PC ₆₁ BM/BCP/	470	8.2×10 ¹²	300-780	3
Ag				
Ag/spiro-OMeTAD/MAPbl₃/ZnO:PBI-H/ITO	350	2.5×10 ¹³	370-770	4
$FTO/c\text{-}TiO_2/Cs_{0.05}MA_{0.16}FA_{0.79}Pb(I_{0.9}Br_{0.1})_3/Spiro-$	520	8.8×10 ¹²	300-810	5
OMeTAD/Au				
ITO/SnO ₂ /MAPbI ₃ / Carbon	260	7.01×10 ¹¹	400-800	5
FTO/NiO _x /MAPbI ₃ /PCBM/PPDIN ₆ /Ag	63.7	1.27×10 ¹²	300-800	6
ITO/P3HT/Perovskite/Spiro-OMeTAD/Ag	410	6.1×10 ¹⁰	410-780	7
$SVO/Cs_{0.05}(FA_{0.85}MA_{0.15})_{0.95}Pb(I_{0.85}Br_{0.15})_{3}/Ag$	42.5		400-750	8
ITO/PTAA/FAPbI ₃ /C ₆₀ /BCP/Ag	450	1.18×10 ¹²	350-800	9
ITO/SnO ₂ /Cs _x DMA _{1-x} PbI ₃ films/PCBM/Bphen/Cu	380	1×10 ¹³	420-700	10
GZO NRs/MAPbl ₃ /MoO ₃ /Au	340	1.6×10 ¹²	350-800	11
ITO/SnO ₂ /FA _{0.2} A _{0.8} Pb ₁₃ /Spiro-OMeTAD/Au	470	3.4×10 ¹²	340-800	This work

Table S4. Key figure-of-merit values for SPPD fabricated in the present study compared with those of devices

Structure	Responsivity	Detectivity	Test conditions	Ref.
Au/CH3NH3PbI3/MWs/Ag	160	1.3×10 ¹²	520nm/9×10 ⁻³ mw cm ⁻²	12
FTO/CdS ₁₀ /MAPbI ₃ /Spiro-OMeTAD/Ag	480	2.1×10 ¹³	700nm/4.57×10 ⁻³ mw cm ⁻²	13
AI/CH ₃ NH ₃ PbI ₃ nanowires/Ni	227	1.36×10 ¹¹	532nm/1×10 ⁻⁵ mw cm ⁻²	14
ITO/CdS/MAPbI ₃ /Au	430	2.3×10 ¹¹	730nm/10 mw cm ⁻²	15
ITO/SnO ₂ /Cs _{0.05} (FA _{0.85} MA _{0.15}) _{0.95} Pb(I _{0.85} Br _{0.15}) ₃ /S piro-OMeTAD/Ag	473	1.35×10 ¹³	720nm/ 5.4×10 ⁻³ mW cm ⁻²	16
ITO/PMMA/MAPbBr ₃ /Au	380	1.7×10 ¹²	520nm/10×10 ⁻³ mw cm ⁻ 2	17
ITO/PTAA/Cs _x FA _{1-x} Pb(I _{1-y} Br _y /PCBM/BCP/Cu	403	6.1×10 ¹³	650nm/73×10 ⁻³ mw cm ⁻ 2	18
ITO/PEDOT:PSS/MAPb(I _{1-x} Br _x) ₃ /PCBM/Ag	31	4×10 ⁹	780nm/6.36 mw cm ⁻²	19
ITO/PEDOT:PSS/MAPbI ₃ /PMMA/PCBM/Ag	460	3.18×10 ¹⁰	671nm/6.5 mw cm ⁻²	20
ITO/ZnO:PBI-H/MAPbI ₃ /Spiro-OMeTAD/Ag	350	2.5×10 ¹³	670nm/126×10 ⁻³ mw cm ⁻²	4
ITO/SnO ₂ /FA _{0.2} A _{0.8} Pb ₁₃ /Spiro-OMeTAD/Au	512	3.4×10 ¹²	671nm/3.4×10 ⁻³ mw	This

reported in the literature under the specific wavelengths

References

- 1 W. Qu, S. Weng, L. Zhang, M. Sun, B. Liu, W. Du and Y. Zhang, Appl. Phys. Express, 2020, 3, 121001.
- 2 Z. Ma, Y. Zhang, T. Li, X. Tang, H. Zhao, J. Li, C. Ma and J. Yao, Appl. Phys. A Mater. Sci. Process., 2020, 126, 869.
- C. Shan, F. Meng, J. Yu, Z. Wang, W. Li, D. Fan, R. Chen, H. Ma, G. Li and A. K. K. Kyaw, J. Mater. Chem. C, 2021, 9, 7632–7642.
- 4 Q. Zhang, M. Shou, Y. Xu, J. Zheng, X. Wen, Y. Zhao, H. Wang, L. Liu and Z. Xie, *J. Mater. Chem. C*, 2020, **8**, 16506–16512.
- 5 G. R. Adams, V. O. Eze, M. A. S. Shohag, R. Simpson, H. Parker and O. I. Okoli, *Eng. Res. Express*, 2020, **2**, 015043.
- 6 J. Wang, S. Xiao, W. Qian, K. Zhang, J. Yu, X. Xu, G. Wang, S. Zheng and S. Yang, Adv. Mater., 2021, 33, 2005557.
- 7 D. Wang, W. Xu, L. Min, W. Tian and L. Li, Adv. Mater. Interfaces, 2022, 9, 2101766.
- 8 R. Xu, L. Min, Z. Qi, X. Zhang, J. Jian, Y. Ji, F. Qian, J. Fan, C. Kan, H. Wang, W. Tian, L. Li, W. Li and H. Yang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 16462–16468.
- 9 X. Feng, M. Tan, M. Li, H. Wei and B. Yang, *Nano Lett.*, 2021, **21**, 1500–1507.
- 10 L. Li, F. Zhang, S. Ye, X. Peng, Z. Sun, J. Lian, L. Liu, J. Qu and J. Song, *Nano Energy*, 2020, **71**, 104611.
- 11 H. Zhou, L. Yang, P. Gui, C. R. Grice, Z. Song, H. Wang and G. Fang, *Sol. Energy Mater. Sol. Cells*, 2019, **193**, 246–2521.
- 12 Y Wu, P Wang, F Ting, B Wang, C Xie, W li, W Wang, Adv. Electron. Mater., 2019, 5(5): 1900135.
- 13 F. Cao, L. Meng, M. Wang, W. Tian and L. Li, Adv. Mater., 2019, 31(12): 1806725.
- 14 J. Tao, Z. Xiao, J. Wang, C. Li, X. Sun, F. Li, X. Zou, G. Liao and Z. Zou, J. Alloys Compd., 2020, 845, 155311.
- 15 Z. Li, H. Li, K. Jiang, D. Ding, J. Li, C. Ma, S. Jiang, Y. Wang, T. D. Anthopoulos and Y. Shi, ACS Appl. Mater. Interfaces, 2019, **11**, 40204–40213.
- 16 W. Tian, L. Min, F. Cao and L. Li, Adv. Mater., 2020, 32, 1906974.
- 17 C. Li, J. Li, C. Li, J. Wang, X. Tong, Z. Zhang, Z. Yin, D. Wu and L. Luo, Ad. Optical Mater., 2021, 9, 2100371.
- 18 E. López-fraguas, B. Arredondo, C. Vega-colado, M. Naja, D. Martín-martín, Y. Galagan, J. M. Sánchez-pena, R. Vergaz and B. Romero, Organic Electronics, 2019, 73, 292–298.
- 19 S. Qiao, Y. Liu, J. Liu, G. Fu and S. Wang, ACS Appl. Mater. Interfaces, 2021, 13, 34625-34636.
- 20 Y. Liu, S. Qiao, H. Sun, J. Liu, L. Guo, Z. Yang, G. Fu and S. Wang, ACS Appl. Nano Mater., 2021, 4, 1682-1691.