Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ratiometric and lifetime-based luminescent thermometer exploiting the Co³⁺ luminescence in CaAl₂O₄:Co³⁺ and CaAl₂O₄:Co³⁺,Nd³⁺

K. Kniec1*, A. Kochanowska1, L. Li2, M. Suta3, L. Marciniak1*

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland

² Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China

³ Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

* corresponding author: k.kniec@intibs.pl, l.marciniak@intibs.pl

KEYWORDS luminescence thermometry, nanocrystals, cobalt, luminescence, lifetime-based

luminescence thermometer

The average decay time of the broad-band luminescence of Co³⁺ was calculated with equation S1:

$$\tau_{avr} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(S1)

for a biexponential decay,

$$y = y_0 + A_1 \cdot exp(-\frac{x}{\tau_1}) + A_2 \cdot exp(-\frac{x}{\tau_2})$$
(S2)

where: τ_1 , τ_2 – decay components of biexponential decay and A_1 , A_2 – amplitudes. y_0 denotes an experimental background of the decay curve.

Figure S1. Comparison of the powder X-ray diffraction patterns of $CaAl_2O_4$ doped with 1% Co^{3+} annealed at 850 °C with reference patterns (ICSD 157457 -hexagonal $CaAl_2O_4$ and ICSD 260 – monoclinic $CaAl_2O_4$).

Figure S2. Comparison of powder X-ray diffraction patterns of CaAl₂O₄: Co³⁺ annealed at 900 °C with reference patterns (ICSD 157457 -hexagonal CaAl₂O₄ and ICSD 260 – monoclinic CaAl₂O₄).

Figure S3. Comparison of powder X-ray diffraction patterns of CaAl₂O₄: Co³⁺ annealed at 1000 °C with reference patterns (ICSD 157457 -hexagonal CaAl₂O₄ and ICSD 260 – monoclinic CaAl₂O₄).

Figure S4. Comparison of powder X-ray diffraction patterns of CaAl₂O₄: Co³⁺ annealed at 1100°C with reference patterns (ICSD 157457 -hexagonal CaAl₂O₄ and ICSD 260 – monoclinic CaAl₂O₄).

Figure S5. The representative results of the Rietveld refinement of the CaAl₂O₄:Co³⁺ annealed at 1000°C-a); the CaAl₂O₄:Co³⁺ annealed at 1100°C-b); and the CaAl₂O₄:Co³⁺,Nd³⁺ annealed at 1100°C-c)

Figure S6. The representative TEM images of $CaAl_2O_4:Co^{3+} - a)$, b), c), d) and $CaAl_2O_4:Co^{3+},Nd^{3+} - e)$, f), g), h) annealed at 850°C -a), -e); 900°C -b), -f); 1000°C -c);-g) and 1100°C -d); -h).

Figure S7. Energy of the maximum of the Co³⁺-related broad-band emission as a function of annealing temperature of the prepared CaAl₂O₄: 0.02% Co³⁺ sample.

Figure S8. Temperature-dependent emission spectra of CaAl₂O₄ activated with Co³⁺ ions with varying doping fraction (emission spectra obtained upon λ_{exc} =445 nm using 590 longpass filter, artificial band at 600 nm results from experimental conditions).

Figure S9. Temperature dependence of CaAl₂O₄: 0.02% Co³⁺ ions prepared by annealing at varying temperatures (emission spectra obtained upon λ_{exc} =445 nm using 590 longpass filter, artificial band at 600 nm and 800 nm results from experimental conditions).

$$\ln\left(\frac{I_0}{I_{em}} - 1\right) = -\Delta E_a \cdot \frac{1}{k_B T}$$
(Eq. S3)

where I_0 corresponds to the initial emission intensity (at 123 K) and k_B is Boltzmann constant

Figure S10. The dependence of the derived thermal crossover activation barrier on the annealing temperature of the prepared CaAl₂O₄: 0.02% Co³⁺ powders.

Figure S11. Temperature dependence of the emission spectra of $CaAl_2O_4:Co^{3+}$, Nd^{3+} prepared by varying annealing temperatures (emission spectra obtained upon λ_{exc} =445 nm using 590 longpass filter, artificial band at 600 nm and 800 nm results from experimental conditions).

Figure S12. Excitation spectra upon detection of the Nd³⁺-related emission (λ_{em} =1064 nm) of CaAl₂O₄: 0.02%Co³⁺, 1%Nd³⁺ at 123 K and 303 K - a) and - b), respectively.

Figure S13. The statistical temperature uncertainty of the conceptualized ratiometric Co³⁺, Nd³⁺ -co-doped CaAl₂O₄ luminescence thermometers.

Figure S14. Temperature-dependent time-resolved luminescence of 0.02%Co³⁺ -doped CaAl₂O₄ (λ_{exc} =266 nm) λ_{em} =800 nm) annealed at 850°C -a), 900°C -b) and 1000°C -c).

•