Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Tuning the Interfacial Insulating Shell Characteristics in CaCu₃Ti₄O₁₂ Nanowires/Polyetherimide Nanocomposites for High-Temperature Capacitive Energy Storage

Junhao Jiang, Jinpeng Li, Yantai Zhang, You Yuan, Xiaoyun Liu, Peiyuan Zuo,* Jun Qian, Qixin Zhuang *

Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Fig. S1 SEM images of (a) HTO NWs, (b) ion-exchanged HTO NWs, (c) CCTO NWs, (d) SO@CCTO NWs, (e) HO@CCTO NWs, and (f) TO@CCTO NWs.

Fig. S2 *D-E* loops of (a) CCTO NWs/PEI, (b) SO@CCTO NWs/PEI, (c) HO@CCTO NWs/PEI, and (d) TO@CCTO NWs/PEI nanocomposite films under different electric field.

Fig. S3 Charged energy density of (a) CCTO NWs/PEI, (b) SO@CCTO NWs/PEI, (c) HO@CCTO NWs/PEI, and (d) TO@CCTO NWs/PEI nanocomposite films under different electric field.

Fig. S4 Comparison of discharged energy density, charge-discharge efficiency, and charged energy density of the four groups of PEI-based nanocomposite films under (a-c) 250 MV m-1, (d-f) 300 MV m-1, and (g-i) 350 MV m-1 electric fields, respectively.

Fig. S5 *D-E* loops of (a) PEI, (b) 5 vol% SO@CCTO NWs/PEI, (c) 5 vol% HO@CCTO NWs/PEI,
(d) 5 vol% TO@CCTO NWs/PEI, and (e) 5 vol% CCTO NWs/PEI nanocomposite films at 150 °C.

		Dielectric	Dielectric	Breakdown	Discharge energy	Efficiency	
		constant	loss at 1	strength	density (J cm ⁻³) at	(%) at 250	
		at 1 KHz	KHz and	(MV m ⁻¹) at	250 MV $m^{\text{-}1}$ and	$MV m^{-1}$ and	
Matrix	Filler	and 25 °C	25 °C	25 °C	150 °C	150 °C	Ref.
PES	10 vol% BT-HCuPc	6	0.04	310	None	None	S 1
c-BCB	10 vol% BNNs	3	0.001	450	0.8	95	S2
c-BCB	7.5 vol% Al ₂ O ₃ -NPLs	3.5	0.002	500	1.01	96.75	
c-BCB	7.5 vol% Al ₂ O ₃ -NWs	3.6	0.0024	None	0.98	88.73	S 3
c-BCB	7.5 vol% Al ₂ O ₃ -NPs	3.4	0.0025	None	0.89	78.93	
PI	1 vol% BTNFs	3.8	0.025	550	1.5	94	S4
PI	3 vol% BTO	4.1	0.015	275	None	None	85
PEI	11 vol% ZrO ₂	4	0.005	579	1.1	95	S6
PEI	11 vol% Al ₂ O ₃ @ZrO ₂	3.9	0.004	615	1.1	96	
PEI	5 vol% CCTO NWs	7.9	0.017	406	1.76	60.83	
PEI	5 vol% TO@CCTO NWs	7.5	0.011	434	1.85	72.49	This
PEI	5 vol% HO@CCTO NWs	7	0.01	454	1.9	76.24	work
PEI	5 vol% SO@CCTO NWs	6.2	0.009	476	1.95	81.43	

Table S1 The dielectric properties of the prepared composites and some reported materials

Reference

 W. Xu, G. Yang, L. Jin, J. Liu, Y. Zhang, Z. Zhang and Z. Jiang, ACS Appl. Mater. Interfaces, 2018, 10, 11233-11241.

2. Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L. Q. Chen,N. Jackson and Q. Wang, *Nature*, 2015, **523**, 576-579.

3. H. Li, D. Ai, L. Ren, B. Yao, Z. Han, Z. Shen, J. Wang, L. Q. Chen and Q. Wang, *Adv. Mater.*, 2019, **31**, 1900875.

4. P. Hu, W. Sun, M. Fan, J. Qian, J. Jiang, Z. Dan, Y. Lin, C.-W. Nan, M. Li and Y. Shen, *Appl. Surf. Sci.*, 2018, **458**, 743-750.

5. W. Sun, X. Lu, J. Jiang, X. Zhang, P. Hu, M. Li, Y. Lin, C.-W. Nan and Y. Shen, *J. Appl. Phys.*, 2017, **121**, 244101.

L. Ren, H. Li, Z. Xie, D. Ai, Y. Zhou, Y. Liu, S. Zhang, L. Yang, X. Zhao, Z. Peng, R. Liao and
 Q. Wang, *Adv. Energy Mater.*, 2021, 11, 2101297.