Interfacial passivation with 4-chlorobenzene sulfonyl chloride for stable and efficient planar perovskite solar cells

Foo Shini^{1, 2, 3} ‡, M. Thambidurai^{1, 2} ‡, Herlina Arianita Dewi², Nur Fadilah Jamaludin², Annalisa Bruno², Anil Kanwat², Nripan Mathews^{2,3}, Cuong Dang^{*1,2}, and Hung D. Nguyen^{*1,2}

- ^{1.} Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- ^{2.} Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore.
- ^{3.} School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.

*Email: hcdang@ntu.edu.sg; hunghtd@ntu.edu.sg

‡ Foo Shini and M. Thambidurai contributed equally.

Figure S1. Tauc plots of the pristine and CBSC passivated peroskite films.

Figure S2. XPS spectra of the pristine and 5 mg/mL CBSC passivated films.

Figure S3. J-V curves of 3 mg/mL and 5 mg/mL CBSC passivated perovskite devices.

Figure S4. J-V curve of (a) the pristine and (b) the CBSC passivated device under reverse and forward direction.

Figure S5. The stabilized PCE at the maximum power point (MPP) of a) the pristine device and (b) the CBSC passivated device.

Figure S6. J-V curve of pristine and CBSC passivated devices after storing in a dried box (30% humidity and room temperature) for 768 hours.

Table S1: The fitting results of TRPL decay curves for 0 mg/mL (pristine), 5 mg/mL, and 7 mg/mL CBSC passivated perovskite film.

Samples	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	$\tau_{average}$ (ns)
Perovskite	1.05	20.15	0.53	104.29	48.40
Perovskite /5 mg/mL CBSC	0.80	26.81	0.54	140.02	72.42
Perovskite /7 mg/mL CBSC	0.94	24.49	0.50	131.50	61.73

Table S2. Photovoltaic parameters of champion devices with the pristine and CBSC passivated

 under reverse and forward scan.

Devices	Scan direction	Voc [V]	Jsc [mA cm ⁻²]	FF [%]	PCE [%]	Hysteresis index (HI)
Pristine	Reverse	1.08	22.43	75.4	18.29	0.17
	Forward	1.00	22.48	67.34	15.18	
5 mg/mL CBSC	Reverse	1.13	22.80	77.79	20.02	0.07
	Forward	1.11	22.74	72.66	18.47	

Table S3. Photovoltaic parameters of perovskite solar cells of pristine and CBSC passivated

 devices stored under a controlled environment (in dark, 30% RH, and room temperature).

Devices	Aging time	Voc [V]	Jsc [mA cm ⁻²]	FF [%]	PCE [%]
Pristine	0 h	1.08	22.43	75.4	18.29
	768 h	1.10	21.83	62.87	15.09
5 mg/mL CBSC	0 h	1.13	22.80	77.79	20.02
	768 h	1.13	22.28	73.65	18.66

Experimental Section;

Materials: Fluorine–doped tin oxide (FTO) substrates were purchased from Nippon sheet glass Co., Ltd. (Japan). lead (II) iodide (PbI₂, 99.99%) and Lead (II) bromide (PbBr₂, 99.99%) and were purchased from Tokyo Chemical Industry (TCI). Methylammonium bromide (MABr, > 99.5%) and Formamidinium iodide (FAI, > 99.5%) were purchased from Dyesol. Tin (II) chloride (SnCl₂, 99.99%), absolute ethanol, acetylacetone (\geq 99.8%), titanium (IV) butoxide (97%), 2-methoxyethanol (99.8%), 4–chlorobenzene sulfonyl chloride (97%), chlorobenzene (99.8%), acetonitrile (99.8%), 4–tert–Butylpyridine (TBP, 98%), tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] (FK209 Co (III) TFSI salt, 98%), spiro–OMeTAD, Bis(trifluoromethylsulfonyl)amine lithium salt (99%), dimethyl sulfoxide (DMSO, 99.99%), Cesium iodide (CsI, 99.99%) and Dimethylformamide (DMF, > 99.9%) were purchased from Sigma Aldrich company.

Preparation of TiO₂ compact layer. A compact titanium dioxide (c-TiO₂) layer was deposited on the surface of the cleaned FTO glass substrate using the spin coating technique of the precursor solution (0.767 μ L of titanium (IV) butoxide and 0.230 μ L of acetylacetone into 7.5 mL of 2-methoxyethanol) at 3000 rpm for 40 s and heated to 500 °C for an hour.

Preparation of SnO₂ layer: a thin tin–oxide (SnO₂) layer was deposited by spin coating the precursor solution (22.5 mg of tin (II) chloride dissolved in 1 mL of absolute ethanol) at 5000 rpm for 20 s and annealed at 200 °C for an hour.