Supporting Information

Guanidium-Assisted Crystallization Engineering for Highly Efficient CsPbI$_3$ Solar Cells

Shuo Wang1, Youkui Xu1, Qian Wang1,*, Xufeng Zhou2, Zhenhua Li3,*, Meng Wang1, Yutian Lei1, Hong Zhang4, Haoxu Wang5 and Zhiwen Jin1

Dr. S. Wang, Dr. Y. Xu, Dr. M. Wang, Dr. Y. Lei, Prof. Q. Wang, Prof. Z. Jin

1School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

Dr. X. Zhou

2School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China

Prof. Z.H. Li

3School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China

Dr. H. Zhang

4Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China

Dr. H. Wang

5Delft University of Technology, Photovoltaic Materials and Devices Group, Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: qianwang@lzu.edu.cn, lizhenhua@lzu.edu.cn

Keywords: CsPbI$_3$, GA$^+$, Hydrogen bond, Defect passivation, Doping
Experimental Section

Materials preparation

Materials preparation: lead (II) iodide (PbI₂, >99.99%), cesium iodide (CsI, ≥99.99%), Guanidine Hydroiodide (GAI, >97.0%) were purchased from Xi’an Polymer Light Technology corporation. 2,2,7,7-tetrakis (N,N-dimethoxyphenylamine)-9,9’-spirobifluorene (Spiro-OMeTAD) was generously provided by HighChem Company Limited Electronic Materials Department. 4-tert-butylpyridine (TBP), bis (trifluoromethylsulfonyl) imidelium salt (Li-TFSI), tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt (III) tri[bis(trifluoromethane)sulfonimid][FK209], chlorobenzene, hydriodic acid (HI), dimethyl formamide (DMF). All the reagents and chemicals were used as received without further purification.

DMAI intermediate Synthesis: Under the condition of ice bath (0 °C), DMF (25 ml) was gradually added dropwise to the HI (100 ml) solution, and stirred at 400 rpm for 6 hours. After the stirring is completed, the rotary steaming apparatus is used to collect the precipitate at a temperature of about 90 °C. Followed, it was dissolved in ethanol repeatedly and precipitated with anhydrous ether to obtain a white sample. Then heated in a vacuum oven at 50°C overnight to form DMAI powder.

Precursor solution preparation: The GAₓCs₁₋ₓPbI₃ precursor solution was prepared by dissolving PbI₂, CsI, DMAI, GAI in DMF, and stirred it for more than 6 hours to achieve GAₓCs₁₋ₓPbI₃(x=0, 1%, 3%, 5%) with 0.6M.

HTL solution preparation: A solution of Spiro-OMeTAD was prepared by dissolving Spiro-OMeTAD powder (72.5mg), a sulfonyl imide (Li-TFSI, 35μL, 520mg Li-TFSI in 1mL acetonitrile), a FK209 (29μL, 300 mg FK209 in 1 mL acetonitrile) and tert-butyl pyridine (tBP, 29μL) in 1mL chlorobenzene solution.

Device fabrication preparation

Device fabrication preparation: FTO-coated glass after cleaning was soaked into TiCl₄ solution for 60 minutes at 70°C. Then, a one-step program was employed to deposit the perovskite layer, spin-coating at 3000 rpm for 30 seconds. To form the GAₓCs₁₋ₓPbI₃ layer, the substrate was annealed at 210°C for 10 minutes under a humidity environment (RH = ~ 40%). A spiro HTL layer was spin-coated on the GAₓCs₁₋ₓPbI₃ layer at 5000rpm for the 30s. Finally, Au was thermally-evaporated on the HTL layer as top electrodes.

Computational Methods:

The Vienna Ab-initio Simulation Package (VASP) is used to implement the first-principles calculation with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional based on the generalized gradient approximation (GGA). The kinetic-energy cut-offs 600 eV and 3 x 3 x 3 Monkhorst-Pack k-mesh are used in structural relaxation until all the force components decrease to less than 0.04 eV/Å. The van der Waals interactions corrections is calculated by the zero damping DFT-D3 method of Grimme.
The Gaussian smearing is used with the smearing parameter 0.05 for all the calculations. In the electronic self-consistent calculations, the convergence criteria were set to 1.0×10^{-6} eV with 7 x 7 x 7 k-mesh before calculations of the band structures along the along high symmetry lines.
Figure S1. (a) Schematic structure and (b) cross-sectional SEM image of the PSCs.

Figure S2. Surface XPS spectrum of I 3d, Cs 3d, Pb 4f.

Figure S3. Optical properties and charge carrier dynamics based on different molar ratio Ga⁺ CsPbI₃: (a-b) PL spectra; (c) Absorption image; (d) Photocurrent decay image; (e) Time-resolved PL spectra.
Figure S4. (a) J-V curves of reference device (0%) and (b) champion device (3%). (c) environment stability of the resulted devices.

Table S1. The photovoltaic parameters of the reference CsPbI$_3$ PSCs under reverse scan direction and forward scan direction. (Extracted from Figure S4a).

<table>
<thead>
<tr>
<th>Scan Direction</th>
<th>J_{SC} (mA cm$^{-2}$)</th>
<th>V_{OC} (V)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse</td>
<td>20.70</td>
<td>1.08</td>
<td>80.30</td>
<td>18.01</td>
</tr>
<tr>
<td>Forward</td>
<td>20.80</td>
<td>1.04</td>
<td>78.20</td>
<td>16.92</td>
</tr>
</tbody>
</table>

Table S2. The photovoltaic parameters of the reference CsPbI$_3$ PSCs with 3% GA$^+$ doping under reverse scan direction and forward scan direction. (Extracted from Figure S4b).

<table>
<thead>
<tr>
<th>Scan Direction</th>
<th>J_{SC} (mA cm$^{-2}$)</th>
<th>V_{OC} (V)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse</td>
<td>20.70</td>
<td>1.14</td>
<td>80.70</td>
<td>19.05</td>
</tr>
<tr>
<td>Forward</td>
<td>20.36</td>
<td>1.06</td>
<td>80.03</td>
<td>17.25</td>
</tr>
</tbody>
</table>