Supporting Information

Enhancing hole carrier injection via low electrochemical doping on circularly polarized polymer light-emitting diodes **†**

By Hao Yan,^a Jessica Wade,^a Li Wan,^b Sooncheol Kwon,^{*c} Matthew J. Fuchter,^{*de} Alasdair J. Campbell¶^a and Ji-Seon Kim^{*a}

- a Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, United Kingdom E-mail: ji-seon.kim@imperial.ac.uk
- b Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
- c Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620 Republic of Korea E-mail: kwansc12@dongguk.edu
- d Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 OBZ, United Kingdom E-mail: m.fuchter@imperial.ac.uk
- e Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, United Kingdom
- † Dedication:To the memory of Professor Alasdair James Campbell.
- ¶ Deceased

EML	Turn-on voltage (V) at 1 cd/m ²	Luminance (cd/m²) at 70 mA/cm²	Luminance (cd/m²) at 10 mA/cm²	Luminous Efficiency (cd/A)		Power Efficiency (lm/W)	
				Peak	@100 cd/m ²	Peak	@100 cd/m ²
F8BT neat	4.9	2549	395	3.8 @9.6V	3.0	1.4 @7.6V	1.3
F8BT:aza[6]H	8.3	1018	70	1.5 @>15V	0.8	0.3 @>15V	0.2
F8BT:aza[6]H: EDA	6.3	2115	280	3.1 @12.8V	2.4	0.9 @10.2V	0.8

Table. S1. Summary of PLED performance showing the turn-on voltage (at 1 cd/m^2), peak luminous efficiency (cd/A), and peak power efficiency (lm/W) and their values at 100 cd/m².

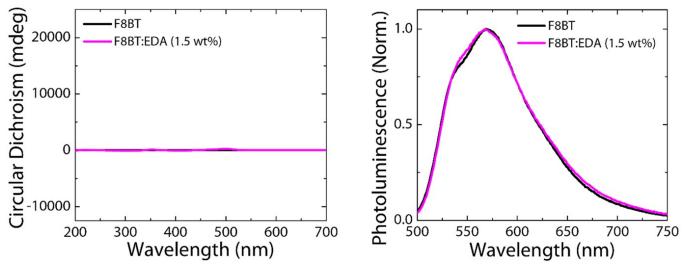


Fig. S1. CD spectra and normalized photoluminescence spectra of F8BT and F8BT:EDA thin films.

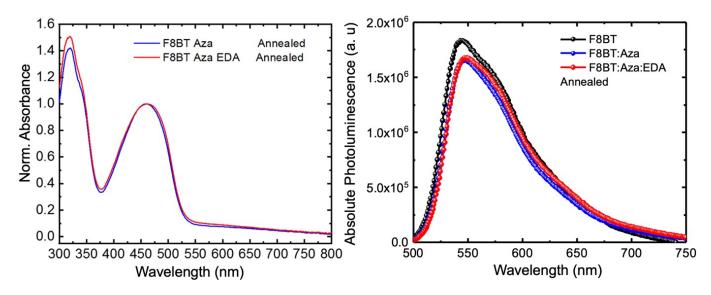


Fig. S2. Normalized absorption spectra and absolute photoluminescence of F8BT:aza[6]H and F8BT:aza[6]H:EDA thin films.

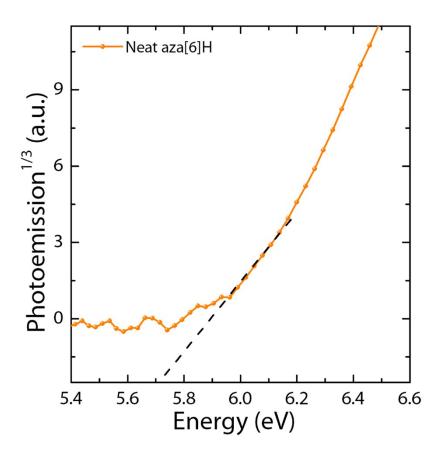
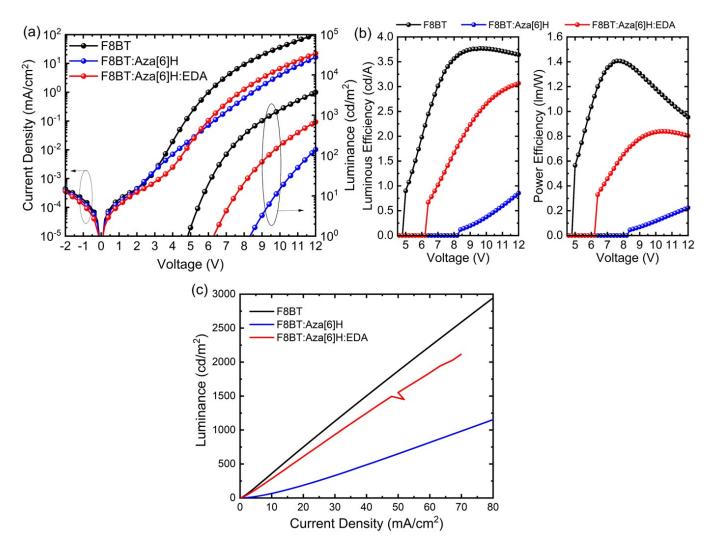
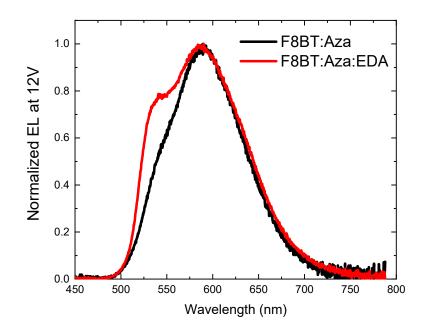



Fig. S3. APS spectra of the neat aza[6]H film. The dashed line (Black) indicates the HOMO level of the neat aza[6]H film.

Fig. S4. *J-V-L* characteristics of 9K F8BT reference PLED devices (a). Corresponding luminance efficiency and power efficiency of 9K F8BT-based PLED devices (b). (c) Luminance as a function of current density. At the same current density (such as 70 mA/cm²), F8BT:aza[6]H PLED had a much lower luminance (1018 cd/m²) than neat F8BT PLED (2549 cd/m²). Large amounts of charge carriers were injected to aza[6]H without recombination due to the shallower subgap tail states of aza[6]H. By adding the EDA, the electrochemical doping process occurring between F8BT and the EDA can enhance direct charge injection to F8BT instead of aza[6]H, thereby increasing luminance (2115 cd/m²) as a manifestation of increasing charge carrier recombination.


Fig. S5. a) Comparisons of the *J-V-L* characteristics of 21K F8BT:aza[6]H and F8BT:aza[6]H:EDA-based CP-PLED devices. b) Corresponding luminance efficiency and power efficiency.

The F8BT (MW = 21 K):aza[6]H:EDA PLED had a 1 V lower V_L and a sharper current turn-on at 2 V than F8BT:aza[6]H, which indicates more efficient charge injection. Increases in the luminous and power efficiencies up to 1.3 cd/A and 0.6 lm/W, respectively, were also achieved, which are higher efficiencies than those of the F8BT:aza[6]H PLED (0.65 cd/A and 0.24 lm/W, respectively). These device improvements are consistent with those of the abovementioned 9 K F8BT device.

Fig. S6. Measured CP-EL spectra (a) and corresponding calculated g_{EL} values (b) obtained for neat F8BT reference PLEDs. No CP emission was emitted from neat F8BT PLEDs

Fig. S7. Normalized EL spectra of F8BT:aza[6]H and F8BT:aza[6]H:EDA at 12 V with a 190-nm-thick active layer. The relative EL intensity at 525-530 nm increases with EDA doping, possibly indicating a change in the recombination zone.

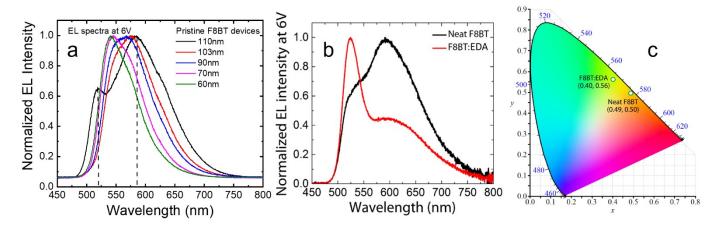
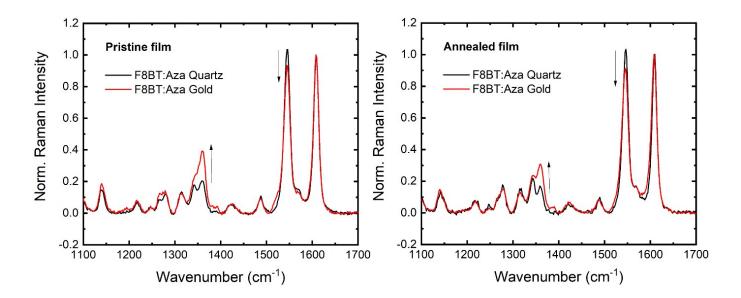



Fig. S8. (a) Thickness-dependent EL spectra of pristine F8BT PLEDs. (b) EL spectra of neat F8BT and F8BT:EDA PLEDs. (c) CIE coordinates for F8BT and F8BT:EDA PLEDs.

Fig. S9. Surface-enhanced Raman spectroscopy (SERS) for F8BT:aza pristine and annealed films on quartz or gold substrates. Compared with quartz substrates, the selective peak intensity increase at 1360 cm⁻¹ on gold substrates indicates the presence of aza[6]H, implying that aza[6]H mainly accumulates at the gold/F8BT interface of annealed films.