Supporting Information

Host and guest joining forces: a holistic approach for metal-organic frameworks in nonlinear optics

Mathias Wolf,^a Kenji Hirai^{*},^b Shuichi Toyouchi,^c Brent Daelemans,^a Eduard Fron,^a Hiroshi Uji-i^{*a,b,d}

^a Department of Chemistry, Celestijnenlaan 200F, 3001 Leuven, Belgium.
E-mail: hiroshi.ujii@kuleuven.be
^b Research Institute for Electronic Science (Ries), Hokkaido University, N20W10, Kita ward, Sapporo, 001-0020 Hokkaido, Japan.
E-mail: hirai@es.hokudai.ac.jp
^c Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan.
^d Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan

<u>1. Structure of MOF-177</u>

Figure S1. Structure of MOF-177.^{1,2}

2. FT-IR spectra obtained from C₆₀⊂MOF-177, Li@C₆₀⊂MOF-177 and precursor compounds

Figure S2. FTIR obtained from toluene (grey), $C_{60} \subset$ MOF-177 (pink), MOF-177 (black), Li@C₆₀ \subset MOF-177 (red), Li⁺@C₆₀(PF₆⁻) powder (blue), oDCB (green) and ACN (orange).

<u>3. ICP-OES measurement for lithium</u>

Figure S3. ICP-OES result of lithium after digesting Li@C₆₀ \subset MOF-177. ICP emission from Li was observed at 610.364 nm.

4. Thermogravimetry for determination of Li@C60 loading

Figure S4. Thermogravimetry of $Li@C_{60} \subset MOF-177$ (red), MOF-177 (black solid) and $Li@C_{60}[PF_6]$ (black dots).

5. Raman spectrum of Li@C60 in solution of oDCB and ACN

Figure S5. Raman spectrum of Li@C₆₀ dissolved in a 1:1 (v:v) mixture of oDCB and ACN. The $A_g(2)$ mode of peak of C₆₀ can still be observed.

6. Raman spectrum of C₆₀⊂MOF-177

Figure S6. Raman spectrum obtained from C_{60} ⊂MOF-177. The $A_g(2)$ mode of C_{60} can be clearly observed. Excited by 785 nm laser.

7. Raman spectra obtained for analysis of Zn-O bond of MOF-177

Figure S7. Raman spectra obtained from MOF-177 (a) soaked in odichlorobenzene/acetonitrile, (b) with accommodated C_{60} and (c) with accommodated $Li@C_{60}$. The orange line shows the background that was substracted.

8. Raman mapping obtained from C₆₀⊂MOF-177 and Li@C₆₀⊂MOF-177

Figure S8. Raman scattering intensity x,y map of (a) C_{60} \subset MOF-177 and (b) Li@C_{60} \subset MOF-177. (c) schematic illustration to indicate z-position for the depth direction. Raman scattering intensity along the depth direction of (d) C_{60} \subset MOF-177 and (e) Li@C_{60} \subset MOF-177. The relative intensity of C₆₀ (1470 cm⁻¹) against MOF-177 (1610 cm⁻¹) and Li@C_{60} (272 cm⁻¹) against MOF-177 (1360cm⁻¹) were plotted for C₆₀ \subset MOF-177 and Li@C_{60} \subset MOF-177, respectively. Scale bars are 2 µm.

9. UV-vis spectrum of Li@C₆₀ dissolved in 1:1 (v:v) mixture of o-dichlorobenzene and <u>acetonitrile</u>

Figure S9. UV-vis spectrum of $Li@C_{60}$ dissolved in 1:1 (v:v) mixture of o-dichlorobenzene and acetonitrile

10. SHG from MOF-177 after exposure to vacuum

Figure S10. SHG from MOF-177 after exposure to vacuum for 30 min.

<u>11. Correction of the polarized SHG data</u>

Figure S11. SHG from a C_{60} films while the polarization of the excitation beam is rotated. Excitation by 830 nm.

Several components of the microscope as well as the detection system have a polarization dependence (e.g. dichroic mirrors, grating, ...). In order to account for these dependences, a C_{60} film was used. It was reported previously that the SHG emission from C_{60} films remains constant when the polarization of the excitation beam is rotated.³

The SHG intensity emitted from a C_{60} film upon rotation of the polarization is shown in Figure S6. The resulting data has been fitted using a cosine function. The resulting function was then normalized and the experimental data obtained from MOF-177 divided by this normalized curve to obtain the corrected data.

Figure S12. Photographs of (a) C_{60} \subset MOF-177 and (b) Li@C₆₀ \subset MOF-177.

References

 H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi, *Nature*, 2004, 5, 523-527

[2] K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272

[3] X. K. Wang, T. G. Zhang, W. P. Lin, S. Z. Liu, G. K. Wong, M. M. Kappes, R. P. H. Chang and J. B. Ketterson, *Appl. Phys. Lett.*, 1992, 60, 810–812.