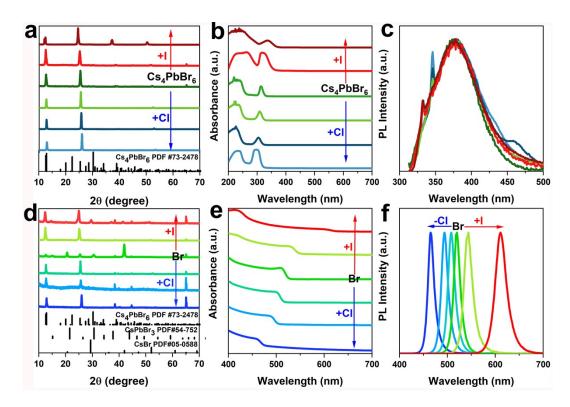
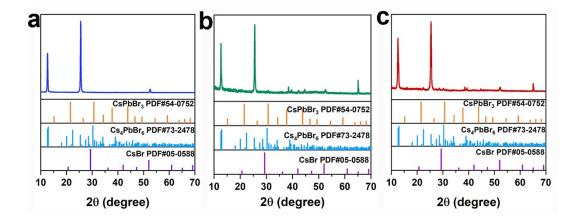
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

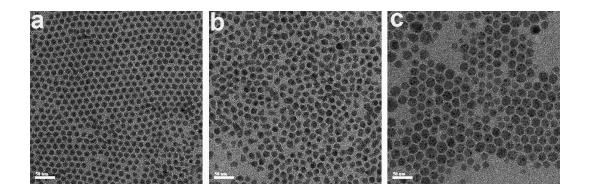
Supporting Information


Water-Induced Reversible Phase Transformation between Cesium Lead Halide Perovskite Nanocrystals Enabling Fluorescent Anti-Counterfeiting

Haiyan Zhao, ^a Tianyu Lin, ^a Shuchen Shi, ^a Wenhai Bai, ^a Tongtong Xuan, ^{*ab} Tianliang Zhou, ^{ab} and Rong-Jun Xie *abc


^aFujian Key Laboratory of Materials Genome, College of Materials, Xiamen
University, No. 422, Siming South Road, Xiamen 361005, China

^bShenzhen Research Institute of Xiamen University, No. 19, Gaoxin South Fourth
Road, Nanshan District, Shenzhen 518000, China


^cState Key Laboratory of Physical Chemistry of Solid Surface, Xiamen 361005, China
Email: ttxuan@xmu.edu.cn (Xuan T.T.); rjxie@xmu.edu.cn (Xie R.-J.)

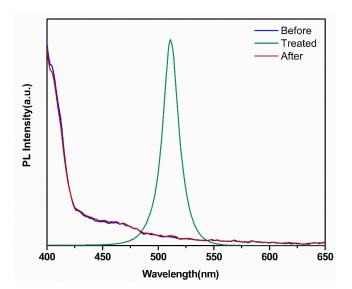

Fig. S1 (a) XRD patterns, (b) absorption spectra, and (c) PL spectra of the Cs₄PbX₆ films with different halide compositions. The detailed formulas of the synthesized Cs₄PbX₆ NCs are Cs₄PbCl_{3.6}Br_{2.4}, Cs₄PbCl_{2.4}Br_{3.6}, Cs₄PbCl_{1.2}Br_{4.8}, Cs₄PbBr₆, Cs₄PbBr_{3.6}I_{2.4}, and Cs₄PbBr_{2.4}I_{3.6} from bottom to top. (d) XRD patterns, (e) absorption spectra, and (f) PL spectra of the CsPbX₃/Cs₄PbX₆ films.

Fig. S2 XRD pattern of Cs₄PbBr₆ NC films: (a) before treatment, (b) after water vapor treatment, and (c) after vacuum drying.

Fig. S3 TEM images of Cs₄PbBr₆ NCs: (a) before treatment, (b) after water vapor treatment, and (c) after vacuum drying.

Fig. S4 Photoluminescence spectra of the Cs₄PbBr₆ NC film based on the logo of Xiamen University under 365 nm excitation: (a) before treatment, (b) water vapor treatment, and (c) vacuum drying.

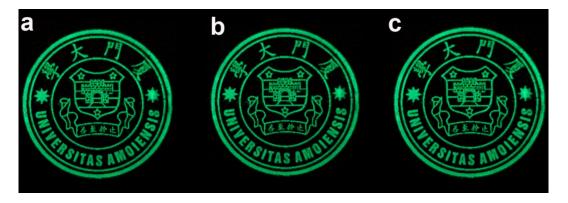
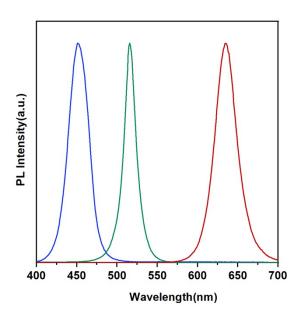



Fig. S5 Photographs of the logo of Xiamen University under 365 nm UV light after (a)

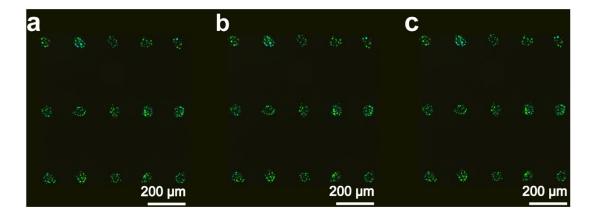

1, (b) 10, and (c) 20 consecutive switching cycles.

Fig. S6 Original patterns for printing: (a) logo of Xiamen University, (b) QR codes from <u>en.xmu.edu.cn</u>.

Fig. S7 Emission spectra of Cs₄PbCl_{3.6}Br_{2.4}, Cs₄PbBr₆, and Cs₄PbBr_{3.6}I_{2.4} NCs films based on logos of Xiamen University after being treated with water vapor.

Fig. S8 Fluorescence microscope photographs of the Cs₄PbBr₆ NC-based patterns under 365 nm UV light after (a) 1, (b) 10, and (c) 20 consecutive switching cycles.

Table S1. Summary of the average thickness of each perovskite pixels

Perovskite Films	The Average Thickness of Each Pixels (μm)				
Cs ₄ PbBr ₆ NCs	0.2401	0.1162	0.1159	0.1212	0.1211
	0.2744	0.2903	0.3167	0.1893	0.1677
CsPbBr ₃ /Cs ₄ PbBr ₆ NCs	0.0869	0.00971	0.0969	0.0943	0.1694
	0.2450	0.2620	0.3432	0.1426	0.2512