Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic supplementary information

for

Electrically responsive structural transformations triggered by vapour and temperature in a series of pleochroic bis(oxalato)chromium(III) complex salts

Marko Dunatov,^a Andreas Puškarić,^a Luka Pavić,^a Zoran Štefanić^a and Lidija Androš Dubraja^{*a}

¹Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

Contents

Table S1. Crystallographic data and structure refinement details for compound 1 _{H2} o, 2 _{H2} o, З _{MeOH} , З, 4 _{H2} o, 4, 5 _{H2} o,
and б н ₂ о3
Table S2. Crystallographic data and structure refinement details for compound 1 and З _{Н20}
Figure S1. Room temperature XRPD pattern and profile fitting results for 15
Figure S2. Room temperature XRPD pattern and profile fitting results for 3 _{H20} 5
Figure S3. XRPD patterns of 1, 1 _{H20} and corresponding calculated patterns from single-crystal X-ray diffraction data
Figure S4. XRPD patterns of 2 and 2 _{H2} o6
Figure S5. XRPD patterns of 3, Зн ₂ о, З _{меон} and corresponding calculated patterns from single-crystal X-ray diffraction data7
Figure S6. XRPD patterns of 4 _{H2O} at 293 and 363 K, and 4 at 378 and 383 K7
Figure S7. Pleochroism in complex salts 1 _{H2} o (а), З _{меон} (b), 5 _{H2} o (c) and 6 _{H2} o (d)8
Figure S8. ATR spectra of 1 and 1 _{H20} 9
Figure S9. ATR spectra of 2 and 2 _{H2} o9
Figure S10. ATR spectra of 3, З меон and Зн ₂ о9
Figure S11. ATR spectrum of 4 _{H2} o10
Figure S12. ATR spectrum of 5 _{H2} o10
Figure S13. ATR spectrum of 6 _{H2} o10
Figure S14. In situ ATR spectra following the drying and wetting proces of compound 1 at 298 K and atmosperic pressure
Figure S15. In situ ATR spectra following the drying and recovery (exposure to MeOH vapour) process of compound G _{MeOH} at 25 °C and atmosperic pressure (a). In situ ATR spectra following the wetting and drying process of compound G _{H2O} at at 298 K and atmosperic pressure (b)11
Figure S16. TGA and DTA curves for compounds: 1 and 2 (a), З _{н20} (b) and 4 _{н20} —6 _{н20} (c) measured under a synthetic air atmosphere
Figure S17. Temperature dependence of the dielectric loss during heating (dark red symbols) and cooling (blue symbols) cycles measured at 100 kHz frequency for compounds 1, Змеон, 4н2о, 5н2о, and 6н2о
Figure S18. Temperature dependence of the dielectric constant during heating (dark red symbols) and cooling (blue symbols) cycles measured at 10 kHz frequency for compounds Змеон, 4 _{H2} o, 5 _{H2} o, and 6 _{H2} o
Figure S19. Temperature dependence of the dielectric loss during heating (dark red symbols) and cooling (blue symbols) cycles measured at 10 kHz frequency for compounds Змеон, 4 _{H2} o, 5 _{H2} o, and 6 _{H2} o
Figure S20. Frequency dependence of the dielectric constant for compounds 1, Змеон, 4н20, 5н20, and 6н20 at 298 К

Compound	1 _{H2O}	2_{Н2}О	З меОн	3	4 _{H2} 0	4	5 _{н20}	6 _{н20}
Temperature/K	140	293	223	298	298	400	298	298
Crystal colour, habit	orange and purplish red, stick	orange and purplish red, prism	orange and purplish red, prism	red, prism	red, prism	red, prism	orange and purplish red, prism	orange and purplish red, prism
Empirical formula	$C_{34}H_{54}Cr_2N_6O_{28}$	$C_{38}H_{48}Cr_2N_6O_{25}$	$C_{22}H_{27}Cr_1N_4O_9$	$C_{21}H_{23}Cr_1N_4O_8$	$C_{21}H_{22}CrN_{3}O_{10}$	$C_{21}H_{20}CrN_3O_9$	$C_{22}H_{26}CrN_3O_{13}$	$C_{23}H_{26}CrN_{3}O_{12}$
<i>M</i> _r /g mol ^{−1}	1098.80	1092.81	543.47	511.43	528.41	510.40	592.46	588.47
Crystal system	Triclinic	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Orthorombic	Monoclinic
Space group	ΡĪ	$P\overline{1}$	P21/c	$P\overline{1}$	P21/C	P21/C	Pbca	P21/c
a/Å	12.2426(5)	10.4903(2)	15.8377(2)	9.5955(4)	15.4312(4)	15.875(2)	12.5654(1)	15.8032(1)
b/Å	13.2490(6)	13.9080(2)	14.9630(2)	9.7701(5)	11.8305(3)	10.325(2)	19.0980(1)	10.4129(1)
c/Å	15.9614(7)	17.7129(4)	9.9377(1)	12.4681(7)	13.3558(4)	14.072(2)	20.5684(1)	14.8291(1)
α/°	99.315(5)	97.152(2)	90	91.438(4)	90	90	90	90
β/°	100.091(5)	100.620(2)	93.667(1)	100.633(4)	110.515(3)	112.22(2)	90	93.612(1)
γ/°	107.873(4)	92.735(2)	90	107.230(4)	90	90	90	90
V/Å ³	2360.80(19)	2513.64(8)	2350.21(5)	1093.28(10)	2283.59(12)	2135.3(6)	4935.88(5)	2435.39(3)
Ζ	2	2	4	2	4	4	8	4
$ ho_{ m calcd}/ m g~ m cm^{-3}$	1.546	1.432	1.536	1.554	1.537	1.588	1.595	1.605
μ/mm ^{−1}	4.680	4.351	4.548	4.816	4.688	4.956	4.500	4.525
F(000)	1144	1096	1132	530	1092		2456	1220
θ range/°	3.60-80.61	3.21-76.47	5.35-77.16	3.62-74.86	3.05-75.87	5.23-78.66	4.73-75.88	5.09-75.84
Measured reflections	38971	26104	15683	7468	12391	9496	28808	13372
Independent reflections	10043	10392	4799	4281	4716	3778	5119	5020
Observed reflections	9364	9692	4570	3673	4160	2477	4872	4683
No. of parameters, restraints	710, 36	721, 2	355, 4	307, 0	332, 3	333, 6	364, 2	384, 8
R _{int}	0.0431	0.0272	0.0312	0.0597	0.0536	0.1069	0.0277	0.0338
<i>R</i> , w <i>R</i> [<i>I</i> > $2\sigma(I)$]	0.0508, 0.1347	0.0577, 0.1737	0.0333, 0.0935	0.0573, 0.1616	0.0600, 0.1620	0.1564, 0.3248	0.0451, 0.1400	0.0406, 0.1026
R, wR [all data]	0.0537, 0.1366	0.0601, 0.1786	0.0347, 0.0946	0.0717, 0.1764	0.0650, 0.1729	0.2094, 0.3585	0.0465, 0.1419	0.0433, 0.1050
Goodness of fit	1.049	1.042	1.085	0.991	1.028	1.159	1.052	1.070
$\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ /e Å ⁻³	0.676, -0.712	1.062; -0.410	0.295; -0.577	0.661; -0.636	0.763; -0.534	0.412; -0.769	0.544; -0.739	0.311; -0.570

Table S1. Crystallographic data and structure refinement details for compound 1_{H20}, 2_{H20}, 3_{MeOH}, 3, 4_{H20}, 4, 5_{H20}, and 6_{H20}

Compound	1	3_{Н2}О			
Temperature/K	293	293			
Crystal colour, habit	reddish, stick	reddish, prism			
Empirical formula	$C_{34}H_{30}Cr_2N_6O_{16}$	$C_{21}H_{33}CrN_4O_{13}$			
<i>M</i> _r /g mol ^{−1}	882.64	601.50			
Crystal system	Monoclinic	Monoclinic			
Space group	P21/C	P21/a			
a/Å	16.1963(12)	19.4728(7)			
b/Å	16.75325(96)	12.6551(4)			
c/Å	13.8097(10)	10.8221(4)			
α/°	90	90			
β/°	103.5740(46)	94.1606(3)			
γ/°	90	90			
V/Å ³	3642.45(44)	2659.89(17)			
Z	4	4			
$ ho_{ m calcd}/ m g~cm^{-3}$	1.610	1.502			
Step size/°	0.013	0.013			
2θ range/°	5–70	6.4–50			
R _p	0.0311	0.0401			
R _{wp}	0.0402	0.048			
R _{exp}	0.0230	0.016			
Refined parameters	67	70			
Background	Chebyshev polynomial of 6th order				

Table S2. Crystallographic data and structure refinement details for compound 1 and $3_{H_{2O}}$

Figure S1. Room temperature XRPD pattern and profile fitting results for 1

Figure S2. Room temperature XRPD pattern and profile fitting results for 3_{H2O}

Figure S3. XRPD patterns of 1, $1_{H_{20}}$ and corresponding calculated patterns from single-crystal X-ray diffraction data

Figure S4. XRPD patterns of 2 and 2_{H2O}

Figure S5. XRPD patterns of 3, 3_{H2O}, 3_{MeOH} and corresponding calculated patterns from singlecrystal X-ray diffraction data

Figure S7. Pleochroism in complex salts $\mathbf{1}_{H20}$ (a), $\mathbf{3}_{MeOH}$ (b), $\mathbf{5}_{H20}$ (c) and $\mathbf{6}_{H20}$ (d)

Figure S8. ATR spectra of 1 and 1_{H2O}

Figure S9. ATR spectra of 2 and 2_{H2O}

Figure S10. ATR spectra of 3, 3_{MeOH} and 3_{H2O}

Figure S11. ATR spectrum of 4_{H2O}

Figure S12. ATR spectrum of 5_{H2O}

Figure S13. ATR spectrum of 6_{H2O}

Figure S14. *In situ* ATR spectra following the drying and wetting proces of compound **1** at 298 K and atmosperic pressure

Figure S15. *In situ* ATR spectra following the drying and recovery (exposure to MeOH vapour) process of compound $\mathbf{3}_{MeOH}$ at 25 °C and atmosperic pressure (a). *In situ* ATR spectra following the wetting and drying process of compound $\mathbf{3}_{H_2O}$ at at 298 K and atmosperic pressure (b)

Figure S16. TGA and DTA curves for compounds: 1 and 2 (a), $3_{H_{20}}$ (b) and $4_{H_{20}}$ – $6_{H_{20}}$ (c) measured under a synthetic air atmosphere

Figure S17. Temperature dependence of the dielectric loss during heating (dark red symbols) and cooling (blue symbols) cycles measured at 100 kHz frequency for compounds 1, 3_{MeOH} , 4_{H2O} , 5_{H2O} , and 6_{H2O}

Figure S18. Temperature dependence of the dielectric constant during heating (dark red symbols) and cooling (blue symbols) cycles measured at 10 kHz frequency for compounds 3_{MeOH} , 4_{H_2O} , 5_{H_2O} , and 6_{H_2O}

Figure S19. Temperature dependence of the dielectric loss during heating (dark red symbols) and cooling (blue symbols) cycles measured at 10 kHz frequency for compounds 3_{MeOH} , 4_{H_2O} , 5_{H_2O} , and 6_{H_2O}

Figure S20. Frequency dependence of the dielectric constant for compounds 1, 3_{MeOH}, 4_{H2O}, 5_{H2O}, and 6_{H2O} at 298 K