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Figure S1: Convergence of the electronic properties with the size of a PBTTT
polymer segment (measured by the number of repeating units n) for an iso-
lated oligomer (right) and its complex with F4TCNQ (right). Left: Kohn-Sham
(KS) and evGW gap for the isolated oligomers, along with the evGW gap ex-
trapolated for an infinite chain (dashed horizontal line). Right: Kohn-Sham,
evGW gap and lowest-energy optical excitation (S1) from BSE for the com-
plex formed by F4TCNQ with oligomers of variable length. The insets shows
a trimer (n = 3, 3-BTTT) and its complex with F4TCNQ, which corresponds
to the system size chosen for the calculations in the main paper, in virtue of
the almost converged electronic properties. Kohn-Sham calculations have been
performed at the PBE0/6-311G* level of theory. GW and BSE employed the
Weigend universal Coulomb fitting basis[1] in the RI-V scheme.[2] All results
have been obtained in the gas phase. These calculations have been performed on
geometries obtained form an infinite PBTTT chain, obtained upon energy min-
imization in 1D-periodic DFT calculation at the PBE0/6-31G* level (geometry
optimization performed with the CRYSTAL17 code [3]). The inter-ring tor-
sional angles of the polymer have been constrained in the structural relaxation,
in order to impose the planarity of solid-state structures. The F4TCNQ posi-
tion has been optimized (PBE0-D3/6-31G* level) on top of a clamped PBTTT
monomer extracted from the periodic calculation. The same dopant geometry
has been retained for complexes formed with longer oligomers.
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Figure S2: Tuning of the PBEh∗=PBEh(a∗) DFT functional against an em-
bedded GW calculation for 3-BTTT-F4TCNQ complex. The Kohn-Sham
gap equals the embedded GW value for a fraction of Hartree-Fock exchange
ax = a∗ = 0.47. The rounded value a∗ = 0.45 has been used throughout the
paper. The embedding in GW considered a polarizable medium with dielec-
tric constant εr = 3.5, realized with a face-centered-cubic mesh of polarizable
points, with lattice constant of 1.4 Å.

PEN PFP
method ∆h ∆e ∆h ∆e

DFT/MM 1.22 -0.72 0.53 -1.21
GW/MM 1.34 -0.78 0.43 -1.45
CR 1.33 -0.61 0.43 -1.31

Table S1: Comparison of bulk hole (h, in the HOMO for GW ) and electron
(e, in the LUMO for GW ) environmental energies (eV units) for pentancene
(PEN) and perfluoropentacene (PFP) computed as total energy differences in
DFT/MM, with the charge response model (CR)[4, 5] and with GW/MM. In
DFT/MM and GW/MM the MM environment has been described with the CR
model. DFT/MM energies have been computed as ∆h/e = Uh/e − U0), where
Uh/e is the extensive energy of the QM/MM system with one h/e localized on
a molecule (QM region), and U0 is the extensive energy of the neutral system.
QM/MM energies have been computed through Eq. 1 in the paper. These re-
sults prove the good agreement among the different techniques, validating our
approach to the calculation of total (extensive) energies in a QM/MM frame-
work.
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Figure S3: Rendering of the electron-averaged hole density (red) and hole-
averaged electron density (blue) for the two lowest-energy optical excitations
from embedded BSE-TDA calculations for the π (top) and α (bottom) com-
plexes. The corresponding energies are annotated in eV units. These excitations
feature a charge-transfer character, with an electron being transferred from the
dopant to the polymer donor to the dopant acceptor, starting from a weakly
hybridized ground state (Qdop ∼ 0.2 in both cases).
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