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Fig. S1. Definition of spray coating parameters. While spray-coating is seemingly straightforward,
optimization of parameters if often delicate. High flow rates can lead to a solvent “flooding” over the substrate
resulting in non-homogeneous films, whereas low rates gave rise to early solvent evaporation that generates
spider-web-like fibers. As in most solution deposition methods, the viscosity and concentration of the
solution (which are interlinked) is a key issue. For composites, a stable dispersion of particles must be ensured
due to the relatively long transit times. Generally, the viscosity must be low to guarantee fine micro-droplet
formation. The main operation parameters that control the spray nozzle include the flow rate, which controls
the amount of solution sprayed per time, the gas pressure, which controls the radius of the spray cone and the
nozzle distance, which helps to regulate the airflow inside topographic features. The meander parameters
(pitch and arm speed) define the movement of the nozzle relative to the substrate. The speed of the spray
arm, together with the flow rate, define primarily the amount of resist deposited locally during one scan.
Finally, by adjusting the temperature of the chuck, it is possible to control the rate of solvent evaporation as
well as to stabilize the film right after the droplet deposition.
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Fig. S2. DSC and AFM investigation of the effect of annealing temperature on the crystallinity of a 4 um
thick spray-coated P(VDF7o-TrFEs) film. Left panel: DSC traces. The film was peeled away from the
substrate and loaded into four DSC crucibles. The first crucible (‘non-annealed’) was directly heated to 170
°C at a rate of 10 °C/min. The three other crucibles were first annealed for 2 hours at 105 °C, 120 °C and 130
°C. respectively. then cooled back to 20 °C and finally heated to 170 °C at a rate of 10 °C/min. The table in
insert shows the integrated peak areas and calculated crystallinity values. Right panel: AFM topography
images acquired before annealing and after annealing at 105 °C and 130 °C. respectively.



Fig. S3. Representative TEM image of the SCO particle filler
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Fig. S4. Representative SEM images of the P(VDF-TrFE) films
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Fig. S6. Representative AFM images (topography and phase) of the annealed composite films (scale bars:
500 nm).
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Fig. S7. XRD analysis on different films. Note that the 30 um films were analyzed in a Bragg-Brentano
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geometry, whereas the other films were investigated in GI-XRD configuration.
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Fig. S8. PFM analysis of the different films
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