Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Structural and photo physical investigation of single-source evaporation of CsFAPbI₃

and FAPbI₃ perovskite thin films

Nadja Klipfel¹, Muhammed P U Haris², Samrana Kazim^{2,5}, Albertus Adrian Sutanto¹,

Naoyuki Shibayama³, Hiroyuki Kanda¹, Abdullah M. Asiri,⁴ Cristina Momblona^{1*}, Shahzada

Ahmad^{2,5*}, Mohammad Khaja Nazeeruddin^{1,6*}

¹Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Valais Wallis, Rue de l'Industrie 17, 1950 Sion, Switzerland.

²BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940 Spain.

³Department of Biomedical Engineering, Toin University of Yokohama, 1614 Kurogane, Aoba, Yokohama, Japan.

⁴Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia.

⁵IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain.

⁶Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.

Figure S1: Photographs of the pre-synthesized perovskite material used for the single-source evaporation a) α -CsFAPbI₃ powder and b) δ -FAPbI₃ powder

Figure S2. XPS spectra of pre-synthesized α -CsFAPbI₃ powder. a) Cs 3d; b) I 3d; c) Pb 4f; d) N 1s.

Figure S3. XPS spectra of pre-synthesized δ -FAPbI₃ powder. a) Cs 3d b) I 3d c) Pb 4f d) N 1s.

Figure S4. The phase purity of synthesized powders and their precursor materials a) α -CsFAPbI₃ powder, and b) δ -FAPbI₃ powder.

Figure S5: TGA of pre-synthesized CsFAPbI3 and FAPbI3 powders.

Table S1: Vacuum deposited rate correlated to crystal phase perovskite from pre-synthesized powder and the corresponding image of the deposited film.

perovskite	deposition rate,	phase	photograph of the
powder	A/S		as-deposited layer
CsFAPbI3	0.25	δ/α	
	0.35	α	
	1.0-1.05	δ	
FAPbI ₃	1.0-1.05	δ	
	3.0-3.05	α/δ	

Figure S6: a) XRD pattern of deposited thin film at a rate of 1.0-1.05 Å/s, 0.35 Å/s 0.25 Å/s. a) as deposited, and b) after annealing. Planes in black indicate α -CsFAPbI₃, planes in brown represents δ -CsFAPbI₃.

Figure S7: XRD pattern of deposited thin film at a rate of 1.0-1.05 Å/s 3.0-3.05 Å/s, a) as deposited, and b) after annealing. Planes in black indicate α -FAPbI₃, planes in brown represents δ -FAPbI₃.

Figure S8: a) FWHM values for perovskite α -phase thin films, b) XRD pattern suggesting shift for α -phase thin films.

Figure S9. a) UV/Vis spectra of CsFAPbI₃ (deposited at 0.35 Å/s), and FAPbI₃ (deposited at 1.01.05 Å/s), on glass substrate as-deposited and after annealing, b) PL spectra of the corresponding CsFAPbI₃, and FAPbI₃ perovskite films, on glass substrate as-deposited and after annealing.

Figure S10: Integration of the azimuthal intensity along 100 reflex $(1.0A^{-1})$ of GIWAXS images shown in Figures 2 a, b a) of the as-deposited CsFAPbI₃ film, and b) of the CsFAPbI₃ film annealed at 60°C.

Figure S11: GIWAXS images taken at an angle of 0.12 for a) as deposited FAPbI₃ film and annealed at 200°C, b) Integrated q-data of the GIWAXS images for FAPbI₃ film after post-annealing at 200°C, and c) Integration of the azimuthal intensity along 100 reflex (1.0 A⁻¹) of GIWAXS images of annealed FAPbI₃ film.

Figure S12: Time resolved photoluminescence spectra (TRPL) for annealed, a) α -CsFAPbI₃ films, and b) FAPbI₃.

Table S2: Fitted decay parameters extracted from time-resolved photoluminescence (TRPL) spectra for annealed thin films.

Name	τ_1 (ns)	τ_2 (ns)
α-CsFAPbI ₃	18.89±0.45	61.61±1.24
α -FAPbI ₃	1.09±0.01	27.03±0.25

Figure S13: Grain size distribution extracted from top-view SEM images for α -CsFAPbI₃ on top of the different under layers.

Figure S14: Grain size distribution extracted from top-view SEM images for α -FAPbI₃ on top of the different under layers.

Figure S15: Cross-section SEM images of annealed perovskite deposited on different underlayers, (a) cross-section SEM of α -CsFAPbI₃ (0.35 Å s⁻¹) (b) cross-section SEM of α -FAPbI₃, (1.0–1.05 Å s⁻¹): (ev) = evaporated layer and (sp) = spin-coated layer deposited at 0.35 Å s⁻¹.

Figure S16: J-V curves for the best efficient devices fabricated with CsFAPbI₃ or FAPbI₃ using SnO2 or MeO-2PACz as charge transporting layers.

Table S3: PV parameters extracted from the JV curves of the most efficient PSC
--

Structure	Voc	J _{sc}	FF	PCE
	(V)	(mA/cm^2)		(%)
FTO/SnO ₂ /FAPbI ₃ /doped spiro-OMeTAD/Au	0.693	2.91	0.32	0.63
FTO/MeO-2PACz/FAPbI ₃ /C ₆₀ /BCP/Cr/Au	0.715	8.08	0.34	1.94
FTO/SnO ₂ /CsFAPbI ₃ /Spiro-OMeTAD/Au	0.655	4.58	0.24	0.74
FTO/MeO-2PACz/CsFAPbI ₃ /C60/BCP/Cr/Au	0.668	6.89	0.23	1.06