Supporting Information

Magnetoelectric behavior of 0-3 Co/BaTiO$_3$-Composites

Toni Buttlar and Stefan G. Ebbinghaus*

Figure S1: XRD patterns of all Co$_x$(BaTiO$_3$)$_{1-x}$ composites after reduction in forming gas at 1073 K for 2 h (a) and after sintering in nitrogen at 1623 K for 2 h with carbon as oxygen getter (b).

Figure S2: Calculated standard Gibbs free energies of oxide formation for cobalt and carbon (full lines), based on data from Barin et al.48 and the corresponding equilibrium oxygen pressures (dashed lines).
Figure S3: XRD patterns of Co$_{0.6}$/BaTiO$_3$$_{0.4}$ after reducing in forming gas at 1073 K for 2 h, sintering in nitrogen at 1623 K for 2 h with carbon as oxygen getter and after a further reductive sintering in forming gas at 1073 K for 2 or 12 h.

Figure S4: REM and EDX area scan of Co$_{0.8}$/BaTiO$_3$$_{0.2}$.

Figure S5: Temperature dependence of the relative permittivity of Co_{x}/(BaTiO_3)_{1-x} with x = 0.1 to 0.6 measured at 1 kHz.

Figure S6: Field dependence of the magnetoelectric coefficients of the Co_{x}/(BaTiO_3)_{1-x} samples (x = 0.1 to 0.6) for parallel (a) and perpendicular orientation (b).
Figure S7: Influence of the frequency of the magnetic AC-field on α_{ME} for Co$_x$(BaTiO$_3$)$_{1-x}$ samples with $x = 0.1$ (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e) and 0.6 (f) in parallel (black filled squares) and perpendicular orientation (blue open squares).
Figure S8: Temperature dependence of the magnetoelectric coefficient of the Co$_{0.5}$(BaTiO$_3$)$_{0.5}$ composite in comparison with the dielectric constant of BaTiO$_3$ (according von Hippel[34]).

Figure S9: Comparison of M vs. H for an P||H and P⊥H electrically poled Co$_{0.2}$(BaTiO$_3$)$_{0.8}$ composite (a) and the difference between the observed magnetizations as a function of the magnetic field (b).