Supporting Information for

Highly sensitive filterless near-infrared wavelength sensor with two

self-driven MLG/Ge heterojunctions

Yao-Zu Zhao, ^a[‡] Can Fu, ^b[‡] Feng-Xia Liang,^a* Yu-Tian Xiao,^b Jing-Yue Li,^b Ming-Ming Liu,^a Di Wu,^c Lin-Bao Luo,^b*

^a School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China

^b School of Microelectronics, Hefei University of Technology, Hefei 230009, China

^c School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

* Email: fxliang@hfut.edu.cn, luolb@hfut.edu.cn

‡ These authors contributed equally.

Figure S1. (a) Raman spectra of the monolayer graphene(MLG). (b) Absorption curve of the monolayer graphene(MLG).

Figure S2. (a) Photovoltaic behavior of MLG/Ge heterojunction. (b) *I-V* curves of two Ag-contacted graphene, two Au-contacted graphene, and two In-Ga alloy-contacted Ge, respectively.

Figure S3. A single Normalized cycle was measured at 10 kHz for determining both rise time (τ_r) and fall time (τ_f) .

Figure S4. The absorption coefficient of n-Ge as a function of wavelength.

The absorption coefficient α of n-Ge is calculated according to the following formula:¹

$$\alpha = \frac{4\pi k}{\lambda} \tag{1}$$

Where λ is the wavelength of incident light, and k is the extinction coefficient of n-Ge. Both of the two parameters can be obtained from the website about refractive index.²

Figure S5 (a) Smulated photocurrent of PD1 and PD2. (b) Simulated photocurrent with different resistivity.

Figure S6. Light intensity attenuation curve of Ge.(data extracted from Figure 1c)

Calculation of the width of the depletion region and diffusion region:

To quantitatively evaluate the depletion region and neutral region of the MLG/Ge Schottky junction device, depletion region width (χ_d) and carrier diffusion length (L_n) could be obtained based on the following formulas: ^{3, 4}

$$\chi_{d}|_{V=0} = \chi_{d0} = \sqrt{\frac{2\varepsilon_{r}\varepsilon_{0}(V_{s})_{0}}{qN_{D}}}$$
(2)
$$\frac{(W_{s} - W_{m})}{q} = (V_{s})_{0}$$
(3)
$$L_{n} = \sqrt{D_{p}\tau_{p}}$$
(4)
$$\frac{D_{p}}{\mu_{p}} = \frac{k_{0}T}{q}$$
(5)

where ε_r , ε_0 , V_S , N_D , q, W_s , W_m , D_p , τ_p , μ_p , k_0 , and T are the relative dielectric constant of semiconductor (Ge: 16), the vacuum dielectric constant (8.85×10⁻¹² F cm⁻¹), the contact potential, the doping concentration (Ge: 10¹⁶ cm⁻³), the elementary charge (1.6×10⁻¹⁹ C), the work function of semiconductor (Ge: 4.3 eV), work function of MLG (4.6 eV), the hole diffusion coefficient, the minority carrier life (Ge: 10⁴ µs), the hole mobility, the Boltzmann constant (1.38×10⁻²³ J K⁻¹), and the temperature (300 K), respectively. What is more, the mobility of *n*-Ge is known to be 1800 cm² V⁻¹ s⁻¹, respectively. Piecewise fitting functions after considering light intensity:

Through the analysis of light intensity in **Figure 4c**, the relationship between current ratio and light wavelength at various light intensities can be expressed by the following empirical formula that is obtained by numerical fitting:

$$\lambda = A + \frac{B - A}{1 + e^{\frac{x - C}{D}}} \tag{6}$$

Where λ is the incident light wavelength, and x is the photocurrent ratio. A, B, C, and D are constants that can be affected by the change of light intensity. Furthermore, the numerical relationship between light intensity and coefficients A, B, C, and D are summarized using Boltzmann fitting, through which the following semiempirical equations of light intensity (P) dependent coefficients are achieved:

$$A = 202.573 + \frac{595.704}{\frac{P-2.535}{1+e^{\frac{P-2.535}{0.162}}}}, B = 223191.25 + \frac{1087288.75}{\frac{P-2.122}{1+e^{\frac{P-2.122}{0.178}}}, C = 30599.2 + \frac{5989.806}{\frac{P-2.269}{1+e^{\frac{P-2.269}{0.176}}}, D = 7750.714 - \frac{7350.721}{\frac{P-2.602}{1+e^{\frac{P-2.602}{0.302}}}.$$

By introducing light intensity as a new variable, the equation 5 above can be further rewritten as a new semiempirical equation:

$$\lambda = 202.573 + \frac{595.704}{1 + e^{\frac{P - 2.535}{0.162}}} + \frac{222988.677 + \frac{1087288.75}{1 + e^{\frac{P - 2.122}{0.178}}} - \frac{595.704}{1 + e^{\frac{P - 2.535}{0.162}}}}{\frac{P - 30599.2 - \frac{5989.806}{2}}{1 + e^{\frac{P - 2.269}{4066.1160.176}}}}}{\frac{1 + e^{\frac{P - 2.269}{0.302}}}{1 + e^{\frac{P - 2.602}{0.302}}}}$$

(7)

References

- 1 M. Grundmann, *Physics of semiconductors*, Springer-Verlag: Berlin, **2010**.
- 2 https://refractiveindex.info/
- 3 M. E. Law, E. Solley, M. Liang, D. E. Burk, *IEEE Electron Device Lett.* 1991, *12*, 401.
- 4 Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller, F. Xia, *Nano Lett.* **2016**, *16*, 4648.