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Synthetic procedures of LiScO2:Cr3+

LiScO2:0.03Cr3+ phosphors were synthesized by high-temperature solid-state reaction. 
Li2CO3 (99.8%), Sc2O3 (99.99%), and Cr2O3 (99.99%) were used as starting materials 
and weighed in stoichiometric proportions, except that 5% excess of Li2CO3 was used 
to compensate its evaporation loss during a high-temperature reaction. The powder 
mixture was ground thoroughly in an agate mortar and then transferred into an 
alumina crucible, followed by sintering at 1150℃ for 2h in air.
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Figure S1. (a) Emission and (b) excitation spectra of LiInO2:xCr3+ (x=0.001-0.05) 
phosphors. Inset: concentration dependence of relative emission intensity.

Figure S2. The IQE of LiInO2:0.03Cr3+ before and after post-treatment. The IQE of 
LiInO2:0.03Cr3+ increased from 14.8% to 36.1% after post-treatment.



Figure S3. (a) PL of LiInO2:0.03Cr3+ and (b) LiScO2:0.03Cr3+with different water 
volume (0-100 mL). With the increase of the water volume, the emission intensity at 
900 nm and 820 nm rise and eventually stabilize.

Figure S4. The XRD pattern of LiInO2:0.03Cr3+ before and after post-treatment.



Figure S5. PL and PLE spectra of LiInO2:0.03Cr3+ sintering in air and in H2/N2 
atmosphere at 1000℃ for 2h. We can found that after sintering in H2/N2 atmosphere, 
the LiInO2:0.03Cr3+ phosphor shows poor luminescence properties comparing with the 
sample sintering in air.

Figure S6. The XRD pattern of LiScO2:0.03Cr3+. Compared to the reference spectrum 
of LiScO2 (ICSD #31316), no inpurties occur when the doping ratio of Cr3+ is 0.03, 
LiScO2 crystals were successfully prepared by high-temperature solid-state method.



Figure S7. (a)(b) PL and PLE spectra of LiScO2:0.03Cr3+after post-treatment. The 
intensity of LiScO2:0.03Cr3+ in 820 nm enhanced 41.8% after post-treatment.

Figure S8. Results of the EQE of the Cr3+-activated phosphors before and after post-
treatment. A* = diluted nitric acid; W* = deionized water



Figure S9. (a) ~ (h) PL and PLE spectra of the reported Cr3+-doped NIR phosphors 
before and after post-treatment. It can be found that after post-treatment, the NIR 
emission of the phosphors enhanced. (a)LiScGeO4:0.007Cr3+, (b)LiInGe2O6:0.08Cr3+, 
(c) LiIn2SbO6:0.03Cr3+, (d) NaInGe2O6:0.07Cr3+, (e) LiInSi2O6:0.06Cr3+, (f) 
LiGa5O8:0.006Cr3+, (g) Ca3Sc2Si3O12:0.06Cr3+, (h) Gd3Sc2Ga3O12:0.03Cr3+

Table S1. Results of the ICP-AES of the LiInO2:0.03Cr3+ phosphor before and after 
post-treatment. 

Sample Concentration of Cr/mg·kg-1 Weight of Cr/mg
LiInO2:0.03Cr3+ precursor 8469.0 4.23
supernatant after treatment 7.01 3.50
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