Appendix A: Supplementary data

A simple and generic post-treatment strategy for highly efficient

Cr³⁺- activated broadband NIR emitting phosphors for high-power

NIR light sources

Zhi-hang Zheng, a Bo-Mei Liu a*, Zhi Zhou b, Chong-Geng Ma, c and Jing Wanga*

^a Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry, School of Materials Science and Engineering Sun Yat-Sen University, Guangzhou 510275, China

^b Prof. Z. Zhou
College of Science
Hunan Optical Agriculture Engineering Technology Research Center
Hunan Agricultural University, Changsha City, Hunan 10128, China

^c CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, No. 2 Chongwen Road, Nan'an District, Chongqing 400065, China

* Corresponding authors. E-mail address: <u>liubm6@mail.sysu.edu.cn</u> (B-M Liu), <u>ceswj@mail.sysu.edu.cn</u> (J. Wang)

Synthetic procedures of LiScO₂:Cr³⁺

LiScO₂:0.03Cr³⁺ phosphors were synthesized by high-temperature solid-state reaction. Li₂CO₃ (99.8%), Sc₂O₃ (99.99%), and Cr₂O₃ (99.99%) were used as starting materials and weighed in stoichiometric proportions, except that 5% excess of Li₂CO₃ was used to compensate its evaporation loss during a high-temperature reaction. The powder mixture was ground thoroughly in an agate mortar and then transferred into an alumina crucible, followed by sintering at 1150°C for 2h in air.

Figure S1. (a) Emission and (b) excitation spectra of $LiInO_2:xCr^{3+}$ (x=0.001-0.05) phosphors. Inset: concentration dependence of relative emission intensity.

Figure S2. The IQE of $LiInO_2:0.03Cr^{3+}$ before and after post-treatment. The IQE of $LiInO_2:0.03Cr^{3+}$ increased from 14.8% to 36.1% after post-treatment.

Figure S3. (a) PL of LiInO₂:0.03Cr³⁺ and (b) LiScO₂:0.03Cr³⁺with different water volume (0-100 mL). With the increase of the water volume, the emission intensity at 900 nm and 820 nm rise and eventually stabilize.

Figure S4. The XRD pattern of $LiInO_2:0.03Cr^{3+}$ before and after post-treatment.

Figure S5. PL and PLE spectra of $LiInO_2:0.03Cr^{3+}$ sintering in air and in H_2/N_2 atmosphere at 1000°C for 2h. We can found that after sintering in H_2/N_2 atmosphere, the $LiInO_2:0.03Cr^{3+}$ phosphor shows poor luminescence properties comparing with the sample sintering in air.

Figure S6. The XRD pattern of $LiScO_2:0.03Cr^{3+}$. Compared to the reference spectrum of $LiScO_2$ (ICSD #31316), no inpurties occur when the doping ratio of Cr^{3+} is 0.03, $LiScO_2$ crystals were successfully prepared by high-temperature solid-state method.

Figure S7. (a)(b) PL and PLE spectra of $LiScO_2:0.03Cr^{3+}$ after post-treatment. The intensity of $LiScO_2:0.03Cr^{3+}$ in 820 nm enhanced 41.8% after post-treatment.

Figure S8. Results of the EQE of the Cr^{3+} -activated phosphors before and after post-treatment. A* = diluted nitric acid; W* = deionized water

Figure S9. (a) ~ (h) PL and PLE spectra of the reported Cr^{3+} -doped NIR phosphors before and after post-treatment. It can be found that after post-treatment, the NIR emission of the phosphors enhanced. (a)LiScGeO₄:0.007Cr³⁺, (b)LiInGe₂O₆:0.08Cr³⁺, (c) LiIn₂SbO₆:0.03Cr³⁺, (d) NaInGe₂O₆:0.07Cr³⁺, (e) LiInSi₂O₆:0.06Cr³⁺, (f) LiGa₅O₈:0.006Cr³⁺, (g) Ca₃Sc₂Si₃O₁₂:0.06Cr³⁺, (h) Gd₃Sc₂Ga₃O₁₂:0.03Cr³⁺

Table S1. Results of the ICP-AES of the $LiInO_2:0.03Cr^{3+}$ phosphor before and after post-treatment.

Sample	Concentration of Cr/mg·kg ⁻¹	Weight of Cr/mg
LiInO ₂ :0.03Cr ³⁺ precursor	8469.0	4.23
supernatant after treatment	7.01	3.50

References

- 1. Z. Ye, Z. Wang, Q. Wu, X. Huo, H. Yang, Y. Wang, D. Wang, J. Zhao, H. Suo and P. Li, *Dalton Trans*, 2021, **50**, 10092-10101.
- 2. T. Liu, H. Cai, N. Mao, Z. Song and Q. Liu, *Journal of the American Ceramic Society*, 2021, **104**, 4577-4584.
- 3. G. Liu, T. Hu, M. S. Molokeev and Z. Xia, *iScience*, 2021, 24, 102250.
- 4. W. Zhou, J. Luo, J. Fan, H. Pan, S. Zeng, L. Zhou, Q. Pang and X. Zhang, *Ceramics International*, 2021, 47, 25343-25349.
- 5. X. Xu, Q. Shao, L. Yao, Y. Dong and J. Jiang, *Chemical Engineering Journal*, 2020, **383**.123108.
- 6. P. Xiong, B. Huang, D. Peng, B. Viana, M. Peng and Z. Ma, *Advanced Functional Materials*, 2021, **31**.2010685.
- 7. Z. Jia, C. Yuan, Y. Liu, X. J. Wang, P. Sun, L. Wang, H. Jiang and J. Jiang, *Light Sci Appl*, 2020, **9**, 86.
- 8. E. T. Basore, W. Xiao, X. Liu, J. Wu and J. Qiu, *Advanced Optical Materials*, 2020, **8**. 2000296.