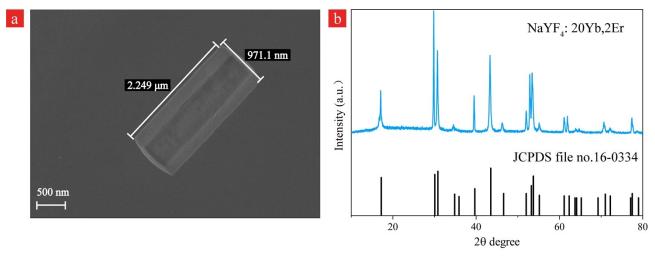
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

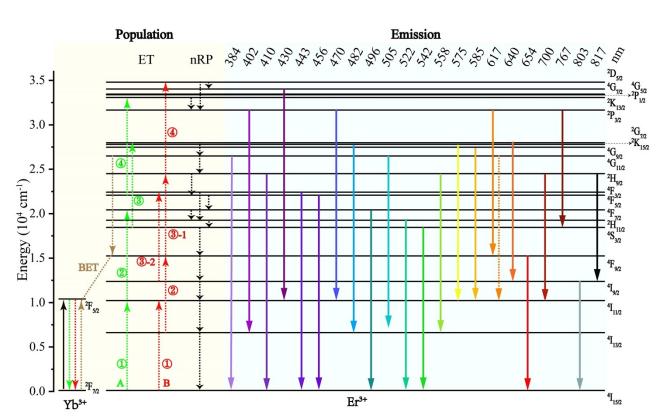
Supplementary information of

Nanosecond kinetics of multiphoton upconversion in an optically trapped single microcrystal

Hanchang Huang, ac Maohui Yuan, ade Shuai Hu, a Yanyi Zhong, Wenda Cui, ac Chuan Guo, ac Changqing Song, ac Guomin Zhao, ac and Kai Han*ab


^aCollege of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China E-mail: hankai0071@nudt.edu.cn

^bState Key Laboratory of Pulsed Power Laser Technology, Hefei 230037, China


^cHunan Proviencial Key Laboratory of High Energy Laser Technology, Changsha 410073, China

^dDepartment of physics and chemistry, PLA Army Academy of Special Operations, Guangzhou 510507, China

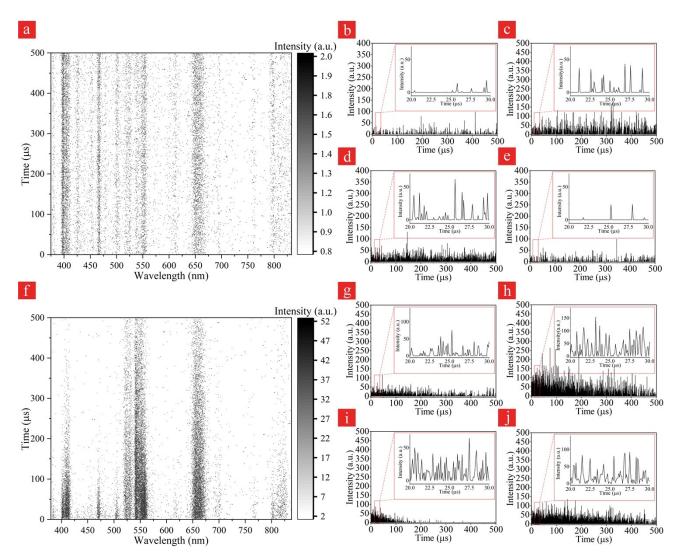

^eThese authors contributed equally to this work and should be considered co-first authors.

Fig. S1 (a) SEM micrographs of β-NaYF₄: Yb/Er (20/2%) microcrystals. (b) XRD patterns of the β-NaYF₄: Yb/Er (20/2%) microcrystals compared to the known peaks of the hexagonal phase of NaYF₄.

Fig. S2 Energy level scheme of the Yb^{3+} – Er^{3+} ions under 976 nm excitation. The population processes, non-radiative transitions, radiative transitions of the Er^{3+} ions are also provided.

Fig. S3 Temporal spectra within 500 μs of different excitation. The spectra are acquired by a gate width with an integration time of 100 ns. The wavelength resolution of the spectra is 0.21 nm. (a) Temporal spectra under continuous excitation. (b-e) Time trace of UCL under continuous excitation with a different central wavelength and the bandwidth is 6 nm. (f) Temporal spectra under pulsed excitation. For nanosecond pulse excitation, the 0 moment is the time of the pulse excitation. (g-j) Time trace of UCL under pulsed excitation with a different central wavelength and the bandwidth is 6 nm.

Table S1 Comparison of the luminescence lifetimes for Er³⁺ doped in different host.

		Lifetime (ms)			
Transitions	$\lambda_{em}\left(nm\right)$	Er/Yb-codoped	Er ³⁺⁻ doped	Er/Yb-codoped	Our work
		phosphate glass1	fluoride glass ²	NaY(WO ₄) ₂ crystal ³	Our work
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	654	0.88	0.938	0.26	0.175
$^4S_{3/2} \rightarrow ^4I_{15/2}$	542	0.56	0.949	0.329	0.269
${}^{2}\mathrm{H}_{11/2} {\longrightarrow} {}^{4}\mathrm{I}_{15/2}$	522	0.12	0.265	0.0241	0.172
${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$	384		0.072	0.0067	0.026
${}^{4}G_{11/2} \rightarrow {}^{4}I_{13/2}$	505				0.023
$^{2}H_{9/2} \rightarrow ^{4}I_{13/2}$	410		0.4	0.108	0.084
$^{2}H_{9/2} \rightarrow ^{4}I_{13/2}$	558				0.081
${}^{2}P_{3/2} \rightarrow {}^{4}I_{13/2}$	402				0.043
${}^{2}P_{3/2} \rightarrow {}^{4}I_{11/2}$	470				0.041

Notes and references

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson and C. W. Trussell, J. Appl. Phys., 2003, 93, 2041-2046.
D. G. O'Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Féron and S. N. Chormaic, EPJ Appl. Phys., 2007, 40, 181-188.

^[3] Z. X. Cheng, S. J. Zhang, F. Song, H. C. Guo, J. R. Han and H. C. Chen, J. Phys. Chem. Solids, 2002, 63, 2011-2017.