Supporting Information

(Bi$_x$Sb$_{1-x}$)$_2$Se$_3$ thin films for short wavelength infrared region solar cells

Jitendra Kumara, Yaniv Drora, Eran Edri*

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva-8410501, Israel

To whom correspondence should be addressed: edrier@bgu.ac.il
Supporting information S1

Table S1. Composition of (Bi\textsubscript{x}Sb\textsubscript{1-x})\textsubscript{2}Se\textsubscript{3} thin film obtained by CSS method.

<table>
<thead>
<tr>
<th></th>
<th>X\textsubscript{target} = Bi/(Bi + Sb)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>0.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>X\textsubscript{exp} = Bi/(Bi + Sb)</td>
<td>0.00</td>
<td>0.01 ± 0.003</td>
<td>0.02 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Se/(Bi + Sb)</td>
<td>1.53 ± 0.06</td>
<td>1.55 ± 0.03</td>
<td>1.60 ± 0.03</td>
<td>1.50 ± 0.02</td>
<td>1.50 ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X\textsubscript{target} = Bi/(Bi + Sb)</th>
<th>0.75</th>
<th>0.85</th>
<th>0.95</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>X\textsubscript{exp} = Bi/(Bi + Sb)</td>
<td>0.11 ± 0.01</td>
<td>0.20 ± 0.01</td>
<td>0.30 ± 0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Se/(Bi + Sb)</td>
<td>1.33 ± 0.06</td>
<td>1.45 ± 0.03</td>
<td>1.46 ± 0.05</td>
<td>1.66 ± 0.09</td>
<td></td>
</tr>
</tbody>
</table>

Supporting information S2

To quantitatively understand the behaviour of the preferred orientation, the texture coefficient (TC) of the Sb\textsubscript{2}Se\textsubscript{3} thin film has been calculated using equation (S1)

\[
TC_{hkl} = \frac{I_{hkl}}{I_{0,hkl}} \sum_{i=1}^{N} \frac{I_{h_i k_i l_i}}{I_{0,h_i k_i l_i}}
\]

(S1)

Where \(I_{hkl}\) is the intensity of the diffraction peaks corresponding to hkl reflection \(I_{0,hkl}\) is the intensity of hkl reflection of the standard Sb\textsubscript{2}Se\textsubscript{3} (JCPDS no. 051-0861) \(N\) is the number of reflections considered for the calculation.

Figure S2. Texture coefficient (TC) of the Sb2Se3 thin-film estimated for (hk0) and (hk1) family of planes
Supporting information S3

Williamson-Hall Method

Crystallite domain size and microstrain in the thin films were estimated from the XRD peak broadening.

\[\beta_l = \frac{k\lambda}{L \cos\theta} \]

(1)

\[\beta_e = 4\varepsilon \tan\theta \]

(2)

Here, wavelength of X-ray \(\lambda = 1.5406 \, \text{Å} \), \(L \) = crystallite domain size, \(K = 0.94 \), \(\beta_l \) = peak broadening due to crystallite dome size, \(\varepsilon \) = microstrain, \(\beta_e \) = peak broadening due to microstrain. \(\theta \) = Bragg diffraction angle

Total boarding in the XRD peaks is the sum of (1) and (2)

\[\beta_{total} = \beta_l + \beta_e = \frac{k\lambda}{L \cos\theta} + 4\varepsilon \tan\theta \]

(3)

If was make a plot between \(\beta_{total} \cos\theta \) and \(4\sin\theta \) than the intercept on the y-axis will give the crystallite domain size, and the slope will give us microstrain present in the film.

Here, \(\beta_{total} \) is the full width at half maximum after subtracting the instrument broadening \(\beta_i \).

The instrument broadening \(\beta_i \) was estimated after subtracting the FWHM of the standard silicon reference sample as per the (4). Here \(\beta \) is the FWHM of the XRD peaks of (Bi\(_x\)Sb\(_{1-x}\))\(_2\)Se\(_3\) thin film
\[\beta_{\text{total}} = \sqrt{(\beta - \beta_i)(\beta^2 - \beta_i^2)} \quad (4) \]

Figure S3. The plots of \(\beta_{\text{total}} \cos \theta \) versus \(4 \sin \theta \) for \((\text{Bi}, \text{Sb})_{1-x} \text{Se}_3\) thin films. Strain is extracted from the slope, and crystallite size is extracted from the y-intercept.

Supporting information S4

Figure S4. Raman spectrum of the Bi\(_2\)Se\(_3\) thin film. Inset is the vibrational modes of Bi\(_2\)Se\(_3\) [1-2].

Supporting information S5

The optical bandgap of the (Bi$_x$Sb$_{1-x}$)$_2$Se$_3$ thin films was estimated by measuring the diffuse reflectance on UV-Vis-NIR spectrophotometer.

Using Kubelka-Munk (KM) function the reflectance spectrum can be transformed to the corresponding absorption spectrum using eq. (1) [1]

\[F(R) = \frac{\alpha}{S} = \frac{(1 - R)^2}{2R} \]

Using Tauc method the energy dependent absorption coefficient (\(\alpha\)) can be expressed by following eq. (2) [2-3]

\[(\alpha hv)\frac{1}{n} = B(hv - E_g) \]

Combining eq1 and eq2

\[\left[F(R)hv\right]^{\frac{1}{n}} = B(hv - E_g) \]

The value of n is equal to 1/2 or 2 for the direct and indirect transition bandgaps, respectively.

The bandgaps were estimated by a linear fit of the linear part of the KM plot. Errors for the bandgaps are estimated by shifting the fitting range by ± 10 meV.
Figure S5. (a) Measured diffused reflectance and (b) and (c) shows the corresponding KM function for the estimation of direct and indirect bandgap, respectively.

Supporting information S6

Table S6. (BiₓSb₁₋ₓ)₂Se₃ thin film solar cell performance parameters. PCE is power conversion efficiency, Jₛₑ is short circuit current, FF is fill factor, Rₛ is shunt resistance, Rₛ is series resistance.

<table>
<thead>
<tr>
<th>xₑₜ</th>
<th>Jₛₑ (mA/cm²)</th>
<th>Vₛₑ (mV)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
<th>Rₛ (Ω·cm²)</th>
<th>Rₛ (Ω·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.68 ± 0.28</td>
<td>187.42 ± 46.21</td>
<td>31.04 ± 2.64</td>
<td>0.68 ± 0.28</td>
<td>25.75 ± 8.59</td>
<td>10.68 ± 2.52</td>
</tr>
<tr>
<td>Best cell</td>
<td>14.19</td>
<td>244.95</td>
<td>35.23</td>
<td>1.23</td>
<td>31.33</td>
<td>8.40</td>
</tr>
<tr>
<td>0.01</td>
<td>3.14 ± 0.64</td>
<td>39.33 ± 5.23</td>
<td>23.74 ± 0.22</td>
<td>0.03 ± 0.009</td>
<td>12.46 ± 1.39</td>
<td>13.31 ± 1.42</td>
</tr>
<tr>
<td>Best cell</td>
<td>3.67</td>
<td>45.4</td>
<td>23.57</td>
<td>0.039</td>
<td>11.99</td>
<td>12.78</td>
</tr>
<tr>
<td>0.02</td>
<td>21.72 ± 1.93</td>
<td>139.96 ± 5.9</td>
<td>28.79 ± 0.69</td>
<td>0.88 ± 0.10</td>
<td>8.32 ± 0.65</td>
<td>4.81 ± 0.59</td>
</tr>
<tr>
<td>Best cell</td>
<td>22.73</td>
<td>146.04</td>
<td>29.15</td>
<td>0.97</td>
<td>8.41</td>
<td>4.56</td>
</tr>
<tr>
<td>0.06</td>
<td>16.16 ± 1.03</td>
<td>136.45 ± 0.0354</td>
<td>27.90 ± 1.43</td>
<td>0.633 ± 0.216</td>
<td>10.19 ± 2.88</td>
<td>6.33 ± 1.09</td>
</tr>
<tr>
<td>Best cell</td>
<td>17.14</td>
<td>169.52</td>
<td>29.63</td>
<td>0.861</td>
<td>13.11</td>
<td>6.53</td>
</tr>
<tr>
<td>0.07</td>
<td>18.68 ± 8.71</td>
<td>59.87 ± 0.01</td>
<td>25.23 ± 0.33</td>
<td>0.27 ± 0.11</td>
<td>4.39 ± 2.59</td>
<td>4.03 ± 2.29</td>
</tr>
<tr>
<td>Best cell</td>
<td>27.78</td>
<td>54.34</td>
<td>24.94</td>
<td>0.376</td>
<td>2.00</td>
<td>1.88</td>
</tr>
</tbody>
</table>