Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

(Bi_xSb_{1-x})₂Se₃ thin films for short wavelength infrared region solar cells

Jitendra Kumar^{*}, Yaniv Dror^{*}, Eran Edri*

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva-

8410501, Israel

To whom correspondence should be addressed: edrier@bgu.ac.il

$X_{target} = Bi/(Bi + Sb)$	0.00	0.10	0.30	0.50	0.65
$X_{exp} = Bi/(Bi + Sb)$	0.00	0.01 ± 0.003	0.02 ± 0.01	0.06 ± 0.01	0.07 ± 0.01
Se/(Bi + Sb)	1.53 ± 0.06	1.55 ± 0.03	1.60 ± 0.03	1.50 ± 0.02	1.50 ± 0.06
$X_{target} = Bi/(Bi + Sb)$	0.75	0.85	0.9	95	1.00
$X_{exp} = Bi/(Bi + Sb)$	0.11 ± 0.01	0.20 ± 0.0	$1 0.30 \pm$	0.01	1
Se/(Bi + Sb)	1.33 ± 0.06	1.45 ± 0.02	3 1.46 ±	0.05	1.66 ± 0.09

Table S1. Composition of $(Bi_xSb_{1-x})_2Se_3$ thin film obtained by CSS method.

Supporting information S2

To quantitatively understand the behaviour of the preferred orientation, the texture coefficient (TC) of the Sb₂Se₃ thin film has been calculated using equation (S1)

$$TC_{hkl} = \frac{I_{hkl}}{I_{0,hkl}} / \frac{1}{N} \sum_{i=1}^{N} \frac{I_{h_i k_i l_i}}{I_{0,h_i k_i l_i}}$$
(S1)

Where I_{hkl} is the intensity of the diffraction peaks corresponding to hkl reflection $I_{o,hkl}$ is the intensity of hkl reflection of the standard Sb₂Se₃ (JCPDS no. 051-0861). N is the number of reflections considered for the calculation.

Figure S2. Texture coefficient (TC) of the Sb2Se3 thin-film estimated for (hk0) and (hk1) family of planes

Williamson-Hall Method

Crystallite domain size and microstrain in the thin films were estimated from the XRD peak broadening.

$$\beta_l = \frac{k\lambda}{L\cos\theta} \tag{1}$$
$$\beta_e = 4\varepsilon \tan\theta \tag{2}$$

Here, wavelength of X-ray $\lambda = 1.5406$ Å, L = crystallite domain size, K = 0.94, β_l = peak broadening due to crystallite dome size, ε = microstrain, β_e = peak broadening due to micro strain. θ = Bragg diffraction angle

Total boarding in the XRD peaks is the sum of (1) and (2)

 $\beta_{total} = \beta_l + \beta_e = \frac{k\lambda}{L\cos\theta} + 4\varepsilon \tan\theta$

$$\beta_{total}\cos\theta = \frac{k\lambda}{L} + 4\varepsilon\sin\theta \tag{3}$$

If was make a plot between $\beta_{total} \cos\theta$ and $4\sin\theta$ than the intercept on the y-axis will give the crystallite domain size, and the slope will give us microstrain present in the film.

Here, β_{total} is the full width at half maximum after subtracting the instrument broadening β_i . The instrument broadening β_i was estimated after subtracting the FWHM of the standard silicon reference sample as per the (4). Here β is the FWHM of the XRD peaks of $(Bi_xSb_{1-x})_2Se_3$ thin film

$$\beta_{total} = \sqrt{(\beta - \beta_i)} \sqrt{\beta^2 - \beta_i^2} \tag{4}$$

Figure S3. The plots of β_{total} Cos θ versus 4Sin θ for (Bi_xSb_{1-x})₂Se₃ thin films. Strain is extracted from the slop, and crystallite site is extracted from the y-intercept.

Figure S4. Raman spectrum of the Bi₂Se₃ thin film. Inset is the vibrational modes of Bi₂Se₃ [1-2].

- H.H. Kung, M. Salehi, I. Boulares, A.F. Kemper, N. Koirala, M. Brahlek, P. Lošťák, C. Uher, R. Merlin, X. Wang, S.W. Cheong, S. Oh, G. Blumberg, Surface vibrational modes of the topological insulator Bi₂Se₃ observed by Raman spectroscopy, Phys. Rev. B. 95 (2017). https://doi.org/10.1103/PhysRevB.95.245406.
- J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Raman spectroscopy of few-quintuple layer topological insulator Bi₂Se₃ nanoplatelets, Nano Lett. 11 (2011) 2407–2414. <u>https://doi.org/10.1021/nl200773n</u>.

The optical bandgap of the $(Bi_xSb_{1-x})_2Se_3$ thin films was estimated by measuring the diffuse reflectance on UV-Vis-NIR spectrophotometer.

Using Kubelka-Munk (KM) function the reflectance spectrum can be transformed to the corresponding absorbtion spectrum using eq. (1) [1]

(1)
$$F(R) = \alpha/S = (1-R)^2/2R$$

Using Tauc method the energy dependent absorbction coefficient (α) can be expressed by following eq. (2) [2-3]

(2)
$$(\alpha hv)^{\frac{1}{n}} = B(hv - E_g)$$

Combining eq1 and eq2

(3)
$$[F(R)hv]^{\frac{1}{n}} = B(hv - E_g)$$

The value of n is equal to 1/2 or 2 for the direct and indirect transition bandgaps, respectively.

The bandgaps were estimated by a linear fit of the linear part of the KM plot. Errors for the bandgaps are estimate by shifting the fitting range by ± 10 meV.

Figure S5. (a) Measured diffused reflectance and (b) and (c) shows the corresponding KM function for the estimation of direct and indirect bandgap, respectively.

- 1. E.N. Davis, Developments in Applied Spectroscopy, Springer US, 1965. https://doi.org/10.1007/978-1-4684-8691-9
- J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Germanium, Phys. Status Solidi. 15 (1966) 627–637. https://doi.org/10.1002/pssb.19660150224.
- N.F. Mott, E.A. Davis, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag. 22 (1970) 903– 922. https://doi.org/10.1080/14786437008221061.

Table S6. $(Bi_xSb_{1-x})_2Se_3$ thin film solar cell performance parameters. *PCE* is power conversion efficiency, J_{sc} is short circuit current, *FF* is fill factor, R_{sh} is shunt resistance, R_s is series resistance.

x _{exp}	J_{sc} (mA/cm ²)	V _{oc} (mV)	FF (%)	PCE (%)	$R_{sh} \left(\Omega \cdot \mathrm{cm}^2 \right)$	$R_s \left(\Omega \cdot \mathrm{cm}^2 \right)$
0.00	0.68 ± 0.28	187.42 ± 46.21	31.04 ± 2.64	0.68 ± 0.28	25.75 ± 8.59	10.68 ± 2.52
Best cell	14.19	244.95	35.23	1.23	31.33	8.40
0.01	3.14 ± 0.64	39.33 ± 5.23	23.74 ± 0.22	0.03 ± 0.009	12.46 ± 1.39	13.31 ± 1.42
Best cell	3.67	45.4	23.57	0.039	11.99	12.78
0.02	21.72 ± 1.93	139.96 ± 5.9	28.79 ± 0.69	0.88 ± 0.10	8.32 ± 0.65	4.81 ± 0.59
Best cell	22.73	146.04	29.15	0.97	8.41	4.56
0.06	16.16 ± 1.03	136.45 ± 0.0354	27.90 ± 1.43	0.633 ± 0.216	10.19 ± 2.88	6.33 ± 1.09
Best cell	17.14	169.52	29.63	0.861	13.11	6.53
0.07	18.68 ± 8.71	59.87 ± 0.01	25.23 ± 0.33	0.27 ± 0.11	4.39 ± 2.59	4.02 ± 2.29
Best cell	27.78	54.34	24.94	0.376	2.00	1.88