Supplementary Materials

Electrical tailoring of the photoluminescence of silicon-vacancy centers in diamond/silicon heterojunctions

Xiaokun Guo a,b, Bing Yang a,*, Jiaqi Lu a,b, Haining Li a,b, Nan Huang a, LuSheng Liu a, Xin Jiang a,c,*

a Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang, 110016, China

b School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang, 110016, China

c Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, Siegen, 57076, Germany

*Corresponding author.

E-mail: byang@imr.ac.cn (Bing Yang), xjiang@imr.ac.cn (Xin Jiang).
Figure S1. The PL spectrum of the as-deposited diamond film excited by a 785 nm laser at liquid nitrogen temperature (77 K). A clear peak located at 948 nm indicates the presence of neutrally-charged SiV0 centers. The inset shows the Raman spectra of the diamond film under the same excitation laser.
Figure S2. The SEM images of the diamond films annealed at various temperatures and durations: (a) 600°C-30 min; (b) 600 °C-60 min; (c) 700 °C-30 min.
Figure S3. XPS spectra of the C1 core carbon of the as-deposited samples before and after air annealing treatment: (a) the as-deposited sample; (b) the 600-30 sample; (c) the 600-60 sample; (d) the 700-30 sample. Due to the insulting nature of diamond, all the spectra are calibrated by aligning the sp³ C-C peak to the known literature value of 284.8 eV.
Figure S4. The PL spectra of the as-annealed sample before and after acid treatment.

In this process, the as-annealed (600-30) sample was soaked in mixed acid (H$_2$SO$_4$: HNO$_3$ = 3:1) at a temperature of 130°C for 120 min, in order to etch the surface sp2-C introduced in the annealing process. The PL result clearly shows that the surface graphitization plays a negligible role on the PL intensity of SiV$^-$ centers in the whole depth.
Figure S5. The water contact angle of the as-deposited samples before and after air annealing treatment: (a) the as-deposited sample; (b) the 600-30 sample; (c) the 600-60 sample; (d) the 700-30 sample.
Figure S6. The PL signals collected at the region about 2 mm away from the electrodes with applying bias voltages on the diamond/n$^+$-Si heterojunction.

Figure S7. The PL spectra of the diamond/n$^+$-Si heterojunctions at different forward bias voltages.
Figure S8. UPS valence band spectrum of the as-deposited H-terminated diamond film, exhibiting the energy difference from vacuum level (E_{VAC}) to valence band maximum (E_V) is estimated to $21.2 \, eV - 15.9 \, eV = 5.3 \, eV$. The electron affinity of diamond (χ) was derived by: $\chi = E_{VAC} - E_c = E_{VAC} - E_v - E_{dia} = 5.3 - 5.47 = -0.17 \, eV$. All energies are measured relative to the common Fermi level that is determined from a reference gold foil.