Organic Cocrystal based on Phthalocyanine with Ideal Packing Mode

towards High-Performance Ambipolar Property

Shuyu Li[†]^a, Lei Zheng[†]^b, Yion Chan^c, Bin Li^b, Yajing Sun^b, Lingjie Sun^{b,d}, Chun Zhen^b, Xiaotao Zhang^{*}^a, Wenping Hu^{b,d}

^a Institute of Molecular Aggregation Science of Tianjin University, Tianjin 300072, China
^b Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
^c 2608, No. 23, Guangqu Road, Chaoyang District, Beijing, China
^d Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China

[*] Corresponding Authors: zhangxt@tju.edu.cn

Supplemental Figures

Fig. S1 Large crystal photo of $ZnPc-F_{16}CuPc$ cocrystal.

Fig. S2 TGA spectra of ZnPC, F_{16} CuPc and ZnPc- F_{16} CuPc.

Fig. S3 Polarized optical microscope images of $ZnPc-F_{16}CuPc$ cocrystal on the Si substrate with angles: (a) 0°, (b) 20°

Fig. S4 The distance in $ZnPc-F_{16}CuPc$ cocrystal.

Fig. S5 The π - π interactions in (a) F_{16} CuPc and (b) ZnPc.

Fig. S6 Photo images of the typical bending configurations of a $ZnPc-F_{16}CuPc$ needlelike cocrystal.

Fig. S7 The distance between (a) ZnPc molecules in ZnPc single crystal and (b) F_{16} CuPc molecules in F_{16} CuPc single crystal.

Fig. S8 The intermolecular potential energy of ZnPc.

Fig. S9 The intermolecular potential energy of $F_{16}CuPc$.

Fig. S10 The SEM image of ZnPc– $F_{16}CuPc$ nanobelts in-situ growing onto the Si/SiO $_2$ substrates.

Fig. S11 Optical microscopy image of ZnPc–F₁₆CuPc nanobelt FET.

Fig. S12 The stability of the ZnPc-F₁₆CuPc cocrystal OFET after ten months of storage in air.

Fig. S13 Comparison of mobility based on ambipolar cocrystals with high-performance transport property for electron and hole in air.

Fig. S14 The saturated transfer curves of the ZnPc– F_{16} CuPc cocrystal phototransistor operated in n-and p-channel under dark condition and 900 nm excitation pulse (160 μ W cm⁻² illumination intensity). The channel area (W×L) is 0.37 um × 17.5 um.

Fig. S15 Photoswitch of the cocrystal phototransistor under 900 nm excitation pulse (160 μ W cm⁻² illumination intensity).

Empirical formula	C64 H16 F16 N16 Zn Cu
Formula weight	1441.84
Wavelength	1.54184 Å
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	a=7.2654(2) Å b=13.0351(3) Å c=13.6626(3) Å α = 85.043(2)° β = 89.559(2)° γ = 79.911(2)°.
Volume	1269.11 ų
Ζ	1
Density (calculated)	1.887 g cm ⁻³
μ	2.23 mm ⁻¹
F(000)	715
Rint	0.0538
Goof	1.182
Final R indices [I>2sigma(I)]	R1=0.0708 wR2=0.2490
R indices (all date)	R1=0.0740 wR2=0.2466

Table S1 Single crystal structure of $ZnPc-F_{16}CuPc$ cocrystal.

Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC): ZnPc-F₁₆CuPc (CCDC: 2039946)

References

- 1 G. Gao, M. Chen, J. Roberts, M. Feng, C. Xiao, G. Zhang, S. Parkin, C. Risko and L. Zhang, J. Am. Chem. Soc., 2020, **142**, 2460–2470.
- 2 Y. Qin, C. Cheng, H. Geng, C. Wang, W. Hu, W. Xu, Z. Shuai and D. Zhu, *Phys. Chem. Chem. Phys.*, 2016, **18**, 14094–14103.
- 3 K. P. Goetz, J. Tsutsumi, S. Pookpanratana, J. Chen, N. S. Corbin, R. K. Behera, V. Coropceanu, C. A. Richter, C. A. Hacker, T. Hasegawa and O. D. Jurchescu, *Adv. Electron. Mater.*, 2016, **2**, 1600203.
- 4 Y. Qin, J. Zhang, X. Zheng, H. Geng, G. Zhao, W. Xu, W. Hu, Z. Shuai and D. Zhu, *Adv. Mater.*, 2014, **26**, 4093–4099.
- 5 J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, K. Singh and D. Zhu, J. Am. Chem. Soc., 2013, **135**, 558–561.
- 6 J. Zhang, H. Geng, T. S. Virk, Y. Zhao, J. Tan, C. A. Di, W. Xu, K. Singh, W. Hu, Z. Shuai, Y. Liu and D. Zhu, *Adv. Mater.*, 2012, **24**, 2603–2607.