Supporting Information

Deep-blue high-efficiency triplet-triplet annihilation organic light-emitting diodes using hydroxyl-substituted tetraphenylimidazole-functionalized anthracene fluorescent emitter

Wan Li, ${ }^{\text {a }}$ Pongsakorn Chasing, ${ }^{\text {a }}$ Phattananawee Nalaoh, ${ }^{a}$ Thanyarat Chawanpunyawat, ${ }^{a}$ Nuttapong Chantanop, ${ }^{\text {a }}$ Chattarika Sukpattanacharoen, ${ }^{\text {b }}$ Nawee Kungwan, ${ }^{\text {b }}$ Praweena Wongkaew, ${ }^{\text {c }}$ Taweesak Sudyoadsuk ${ }^{\text {a }}$ and Vinich Promarak*ac
${ }^{a}$ Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand. E-mail: vinich.p@vistec.ac.th ${ }^{b}$ Department of Chemistry, Faculty of Science, Chiang Mai University, Amphur Muang, Chiang Mai 50200, Thailand.
${ }^{\text {c Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of }}$ Science and Technology, Wangchan, Rayong 21210, Thailand.

Synthesis and characterization

9,10-Bis(4-bromophenyl)anthracene (2): A mixture of 1 ($1.00 \mathrm{~g}, 2.32 \mathrm{mmol}$), 1-bromo-4-iodobenzene $(1.51 \mathrm{~g}, 5.34 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(135 \mathrm{mg}, 0.12 \mathrm{mmol}), 2 \mathrm{M}$ sodium carbonate $(4.90 \mathrm{~g}, 46.27 \mathrm{mmol})$ aqueous solution and anhydrous THF (40 mL)was degassed with nitrogen for 15 min while stirring. Then the stirring reaction was heated and refluxed under nitrogen atmosphere for 36 h . The mixture was cooled to room temperature after confirming consumption of the starting materials by TLC in $10 \% \mathrm{v} / \mathrm{v}$ dichloromethanehexane. Then the mixture was added with brine $(20 \mathrm{~mL})$ and extracted with a certain amount of dichloromethane, then dried over anhydrous sodium sulfate and filtered. The extract was concentrated under reduced pressure and finally purified by silica gel column chromatography eluting with $10 \% \mathrm{v} / \mathrm{v}$ dichloromethane-hexane to get white solids ($795 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 4 \mathrm{H}$), $7.67\left(\mathrm{dd}, \mathrm{J}=6.8,3.3 \mathrm{~Hz}, 4 \mathrm{H}\right.$), $7.39-7.33(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.88,136.00$, $133.00,131.74,129.74,126.69,125.39,121.86$. HSMS (APCI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{Br}_{2}(\mathrm{M}+): 487.9598$, found: $489.0103(\mathrm{MH}+)$.

3-(4-(10-(4-Bromophenyl)anthracen-9-yl)phenyl)-9-phenyl-9H-carbazole (3): A mixture of 2 ($2.50 \mathrm{~g}, 5.12$ mmol), (9 -phenyl-9H-carbazol-3-yl)boronic acid ($490 \mathrm{mg}, 1.71 \mathrm{mmol}$), $\left.\mathrm{Pd}^{(} \mathrm{PPh}_{3}\right)_{4}(39 \mathrm{mg}, 0.03 \mathrm{mmol}), 2 \mathrm{M}$ aqueous solution of sodium carbonate (10 mL) and anhydrous THF $(40 \mathrm{~mL})$ was degassed with nitrogen for 15 min while stirring. Then the stirring reaction was heated and refluxed under nitrogen atmosphere for 12 h . The mixture was cooled to room temperature after confirming consumption of the starting materials by TLC in $10 \% \mathrm{v} / \mathrm{v}$ dichloromethane-hexane. Then the mixture was added with brine $(20 \mathrm{~mL})$ and extracted with a certain amount of dichloromethane, then dried over anhydrous sodium sulfate and filtered. The extract was concentrated under reduced pressure and finally purified by silica gel column chromatography eluting with $10 \% \mathrm{v} / \mathrm{v}$ dichloromethane-hexane to get white solids ($800 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (s, $1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-$ $7.67(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-$
$7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.55,139.28$, $138.67,136.21,135.81,135.58,135.19,133.62,131.19,129.86,129.81,128.09,128.07,127.92,125.69$, $125.37,125.33,125.24,124.69,124.32,123.59,123.45,123.22,122.14,121.65,119.86,118.49,118.27$, 117.00, 108.28, 108.11. HSMS (APCI): m/z calcd for $\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{BrN}(\mathrm{M}+): 649.1405$, found: 650.1385 (MH+).

9-Phenyl-3-(4-(10-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)anthracen-9-yl)phenyl)-9H-

carbazole (4): A mixture of $3(500 \mathrm{mg}, 0.77 \mathrm{mmol})$, bis(pinacolato)diboron ($587 \mathrm{mg}, 2.31 \mathrm{mmol}$), KOAc ($906 \mathrm{mg}, 9.25 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{mg}, 0.32 \mathrm{mmol})$ were mixed followed by adding 30 mL anhydrous Toluene. The mixture was degassed with nitrogen for 15 min while stirring. Then the stirring reaction was heated and refluxed under nitrogen atmosphere for 15 h . The mixture was cooled to room temperature after confirming consumption of the starting materials by TLC in $30 \% \mathrm{v} / \mathrm{v}$ dichloromethanehexane. Then the mixture was added with brine $(20 \mathrm{~mL})$ and extracted with a certain amount of dichloromethane, then dried over anhydrous sodium sulfate and filtered. The extract was concentrated under reduced pressure and finally purified by silica gel column chromatography eluting with $30 \% \mathrm{v} / \mathrm{v}$ dichloromethane-hexane to get white solids ($419 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H})$, $8.25(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dt}, \mathrm{J}=$ $20.4,6.6 \mathrm{~Hz}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.28,141.46,141.09,140.56,137.74$, $137.28,137.07,137.01,134.81,133.16,131.82,130.84,129.99,129.96,129.76,127.57,127.25,127.14$, $127.09,126.97,126.19,125.51,125.07,125.04,124.04,123.57,120.40,120.16,118.90,110.17,109.99$, 83.97, 24.99. HSMS (APCI): m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{BNO}_{2}(\mathrm{M}+): 697.3125$, found: $698.2077(\mathrm{MH}+)$.

4-Bromo-2-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol (6) \& 2-(3-Bromophenyl)-1,4,5-triphenyl-1H-

 imidazole (7): A mixture of $5(500 \mathrm{mg}, 2.38 \mathrm{mmol})$ and 5-bromosalicylaldehyde $(478 \mathrm{mg}, 2.38 \mathrm{mmol})$ or 3bromobenzaldehyde ($440 \mathrm{mg}, 2.38 \mathrm{mmol}$) were mixed at room temperature followed by adding 30 mL of acetic acid. Aniline of $1.022 \mathrm{~g} / \mathrm{mL}(0.33 \mathrm{~mL}, 3.57 \mathrm{mmol}$ or $0.33 \mathrm{~mL}, 3.60 \mathrm{mmol})$ was then added to this solution drop by drop, and ammonium acetate ($917 \mathrm{mg}, 11.9 \mathrm{mmol}$ or $925 \mathrm{mg}, 12 \mathrm{mmol}$) was added subsequently. The mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 12 h under nitrogen atmosphere and reflux device. After termination of the reaction, the dark solution was poured into a copious amount of water in a 1000 mL beaker. Then a certain amount of sodium hydrogen carbonate was added to the mixture until neutralizing. The crude product was purified by recrystallization in dichloromethane.6 as white solids ($678 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H})$, 7.32$7.22(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $157.39,143.44,136.23,134.83,132.91,132.05,131.27,130.80,129.80,129.67,129.12,129.01,128.78$, $128.60,128.43,128.42,127.48,127.10,119.57,114.22,109.76$. HSMS (APCI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}$ $(\mathrm{M}+): 466.0681$, found: $467.0786(\mathrm{MH}+)$.
7 as white solids ($848 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.27,138.58,136.81,134.23,132.49,131.92,131.33,131.21,131.10,130.39,129.47,129.25$, $128.58,128.40,128.38,128.22,128.12,127.38,127.17,126.76,122.29 . \operatorname{HSMS}$ (APCI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{2}(\mathrm{M}+): 450.0732$, found: $451.0560(\mathrm{MH}+)$.

All crystallographic information (CIF) data including CCDC numbers of 2017513 and 2051106 for HOPIAC and PIAC, respectively, were deposited on and can be obtained with no cost at https://www.ccdc.cam.ac.uk/.
Table S1. Crystallographic data

Compound name	HO-PIAC	PIAC
CCDC number	2017513	2051106
Empirical formula	$\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{C}_{71} \mathrm{H}_{47} \mathrm{~N}_{3}$
Formula weight	1077.48	942.11
Temperature/K	100	100
Crystal system	triclinic	monoclinic
Space group	P-1	C2/c
a / \AA	9.8323(5)	41.3796 (13)
b/ \AA	15.2021(8)	8.3576(3)
c/ \AA	19.9693(11)	30.6626(9)
$\alpha /{ }^{\circ}$	71.560(2)	90
$\beta /{ }^{\circ}$	88.608(2)	100.697(2)
γ^{\prime}	74.215(2)	90
Volume/ \AA^{3}	2718.6(3)	10419.9(6)
Z	2	8
$\rho_{\text {cald }} / \mathrm{g} / \mathrm{cm}^{3}$	1.316	1.201
μ / mm^{-1}	0.219	0.532
$\mathrm{F}(000)$	1120.0	3952.0
Crystal size/mm ${ }^{3}$	$0.42 \times 0.05 \times 0.02$	$0.57 \times 0.23 \times 0.09$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	4.168 to 52.21	4.346 to 136.472
Index ranges	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12, \\ & -18 \leq \mathrm{k} \leq 18, \\ & -24 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -49 \leq h \leq 49, \\ & -9 \leq k \leq 10, \\ & -32 \leq 1 \leq 36 \end{aligned}$
Reflections collected	83699	61803
Independent reflections	$\begin{gathered} 10787\left[\mathrm{R}_{\text {int }}=0.1341,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0750\right] \\ \hline \end{gathered}$	$\begin{gathered} 9533\left[\mathrm{R}_{\text {int }}=0.0856,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0432\right] \end{gathered}$
Data/restraints/parameters	10787/0/717	9533/0/667
Goodness-of-fit on F^{2}	1.040	1.027
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0690, \mathrm{wR}_{2}=0.1461$	$\mathrm{R}_{1}=0.0531, \mathrm{wR}_{2}=0.1340$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1352, \mathrm{wR}_{2}=0.1719$	$\mathrm{R}_{1}=0.0687, \mathrm{wR}_{2}=0.1432$
Largest diff. peak/hole / e \AA^{-3}	0.64/-0.60	0.66/-0.35

Fig .S1 Normalized PL spectra in varying solvents.

Fig. S2 S_{0} optimized geometries of enol forms computed at B3LYP/6-31G(d,p) level.

Fig. S3 S_{1} optimized geometries of enol forms computed at B3LYP/6-31G(d,p) level.

Table S2 Summary of relative proton transfer barriers and computed energy differences between the enol and keto forms $\left(\Delta E=E_{\text {keto }}-E_{\text {enol }}\right)$ between S_{0} and S_{1} computed at $B 3 L Y P / 6-31 G(d, p)$ level.

Molecule	PT barrier $(\mathrm{kcal} / \mathrm{mol})$		$\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$	
	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$
HO-PIAC	11.75	5.93	10.62	4.04

Table S3 Selected bond lengths (\AA) and torsional angles $\left({ }^{\circ}\right)$ at S_{0} and S_{1} optimized geometries computed at B3LYP/6-31G(d,p) and TD-B3LYP/6-31G(d,p) levels, respectively.

Molecule	State	Enol form				Keto form			
		Distance (\AA)			$\begin{gathered} \text { Torsional angle }\left({ }^{\circ}\right) \\ \hline \mathrm{C} 2 \mathrm{C} 3 \mathrm{C} 4 \mathrm{C} 5 \end{gathered}$	Distance (\AA)			Torsional angle $\left({ }^{\circ}\right)$ C2C3C4C5
		$\begin{aligned} & \text { O1- } \\ & \text { H1 } \end{aligned}$	N1 \cdots H1	$\begin{gathered} \mathrm{C} 3- \\ \mathrm{C} 4 \end{gathered}$		O1 $\cdots \mathrm{H} 1$	$\begin{gathered} \hline \mathrm{N} 1- \\ \mathrm{H} 1 \end{gathered}$	$\begin{gathered} \mathrm{C} 3- \\ \mathrm{C} 4 \end{gathered}$	
HO-	S_{0}	0.996	1.697	1.483	36.06	1.552	1.035	1.480	33.46
PIAC	S_{1}	0.999	1.681	1.473	28.92	1.695	1.035	1.467	29.02
PIAC	S_{0}	-	-	1.485	36.48	-	-	-	-
	S_{1}	-	-	1.479	30.96	-	-	-	-

Table S4 Simulated enol absorption maximum wavelengths ($\lambda_{\text {abs }}$), enol and keto emission maximum wavelengths $\left(\lambda_{\mathrm{em}}\right)$, oscillator strength (f), molecular orbitals (MOs) contribution, and Stokes shift calculated by TD-B3LYP/6-31G(d,p) level.

	Absorption				Emission	
	Enol			Enol	Keto	
	$\lambda_{\text {abs }}(\mathrm{nm})$	f	MOs Contribution	$\lambda_{\text {em }}(\mathrm{nm})$	$\lambda_{\text {em }}(\mathrm{nm})$	
HO-PIAC	399	0.3927	HOMO \rightarrow LUMO (97%)	499	549	150
PIAC	396	0.3582	HOMO \rightarrow LUMO (97\%)	494	-	98

Fig. S4 DSC and TGA thermograms analyzed at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under N_{2} flow.

Fig. S5 Cyclic voltammograms recorded in dry dichloromethane containing n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 50 $\mathrm{mV} \mathrm{s}^{-1}$ under argon atmosphere.

Fig. S6 a) and b) PL spectra and c) and d) transient PL decay spectra in neat films and doped (10, 20, 30 $\mathrm{wt} \%$ doped CBP thin films.

Table S5 Photoluminescent properties of doped films in various conditions.

	HO-PIAC (doped in CBP)		PIAC (doped in CBP)	
	neat	10%	neat	10%
$\lambda_{\mathrm{em}}(\mathrm{nm})$	451	441	450	437
$\tau(\mathrm{~ns})$	0.70	2.62	1.21	2.54
$\Phi_{\mathrm{PL}}(\%)$	19	56	40	57

Fig. S7 EL spectra of OLEDs at different applied voltages.

Fig. S8 Transient EL decay of OLED device based on PIAC at different voltages.

Fig. S9 Amplified transient EL decay plots of the delayed component at a driving voltage of 10 V .

Fig. S10 Photocopies of Mass spectra, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra.

Compound 2:

解問

WLO1-32-3 H 512scan
CP_C13CPD32_DE12 CDC13 \{C: \VISTEC NMR DatalVP\} vpwal 7

Compound 3:

```
WR_PROTON8 CDCI3 \{C: \VISTEC NMR DatalVP\} vpwal 10
```


WL01-35 C 1024 CDC13

Compound 4:

WLO1-40 H CDCl
BBO PRO TON8
BBO_PROT̄N8 CDC13 \{C: \VISTEC NMR Data 1

BBO_C13CPD256 CDC13 COUVIVITTEC NMR Datalypl ypyal 10

Compound 6:

CP_PROTON8 CDC13 \{C: \VISTEC NMR Data\VP\} vpwal 11

WLO1-30-2 C13 1024
CP_C13CPD32_DE12 CDC13 \{C: $\backslash V I S T E C ~ N M R ~ D a t a \backslash V P\} ~ v p w a l ~ 11 ~$

Compound 7:

BBO_C13CPD256 CDC13 \{C:\VISTEC NMR Data\VP\} vpwal 13

[^0]
HO-PIAC:

Q-ToF MS Report | Frontier Research Center@VISTEC

PIAC:

D: DatalMSE\VIP_LAB|Wan LilWL01-45_final10_G19\1\1SRef

MALDI-TOF-MS Report

Frontier Research Center, Vidyasirimedhi Institute of Science and Technology

[^0]:

